論文の概要: Quantum-Efficient Convolution through Sparse Matrix Encoding and Low-Depth Inner Product Circuits
- arxiv url: http://arxiv.org/abs/2507.19658v1
- Date: Fri, 25 Jul 2025 20:08:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:55.883323
- Title: Quantum-Efficient Convolution through Sparse Matrix Encoding and Low-Depth Inner Product Circuits
- Title(参考訳): スパースマトリックス符号化と低次元内積回路による量子効率変換
- Authors: Mohammad Rasoul Roshanshah, Payman Kazemikhah, Hossein Aghababa,
- Abstract要約: 本稿では、畳み込み積を構造化行列乗算として再構成する資源効率の量子アルゴリズムを提案する。
我々は、最適化されたキー値QRAM状態符号化を用いてスパース入力パッチを作成する量子フレームワークを構築する。
我々のアーキテクチャは、一般化されたSWAP回路を用いて、複数のフィルタにまたがるバッチ畳み込みをサポートする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolution operations are foundational to classical image processing and modern deep learning architectures, yet their extension into the quantum domain has remained algorithmically and physically costly due to inefficient data encoding and prohibitive circuit complexity. In this work, we present a resource-efficient quantum algorithm that reformulates the convolution product as a structured matrix multiplication via a novel sparse reshaping formalism. Leveraging the observation that localized convolutions can be encoded as doubly block-Toeplitz matrix multiplications, we construct a quantum framework wherein sparse input patches are prepared using optimized key-value QRAM state encoding, while convolutional filters are represented as quantum states in superposition. The convolution outputs are computed through inner product estimation using a low-depth SWAP test circuit, which yields probabilistic amplitude information with reduced sampling overhead. Our architecture supports batched convolution across multiple filters using a generalized SWAP circuit. Compared to prior quantum convolutional approaches, our method eliminates redundant preparation costs, scales logarithmically with input size under sparsity, and enables direct integration into hybrid quantum-classical machine learning pipelines. This work provides a scalable and physically realizable pathway toward quantum-enhanced feature extraction, opening up new possibilities for quantum convolutional neural networks and data-driven quantum inference.
- Abstract(参考訳): 畳み込み操作は、古典的な画像処理と現代のディープラーニングアーキテクチャの基礎となっているが、量子領域への拡張は、非効率なデータ符号化と禁止的な回路複雑性のためにアルゴリズム的に、物理的にコストがかからないままである。
本研究では,新しいスパース変換形式を用いて,畳み込み積を構造化行列乗法として再構成する資源効率の量子アルゴリズムを提案する。
局所的な畳み込みを2つのブロック-Toeplitz行列乗法としてエンコードできるという観測を生かして、スパース入力パッチを最適化されたキー値QRAM状態符号化を用いて作成し、畳み込みフィルタを重ね合わせの量子状態として表現する量子フレームワークを構築する。
畳み込み出力は、低深度SWAPテスト回路を用いて内部積推定により計算され、サンプリングオーバーヘッドを低減した確率振幅情報が得られる。
我々のアーキテクチャは、一般化されたSWAP回路を用いて、複数のフィルタにまたがるバッチ畳み込みをサポートする。
従来の量子畳み込み手法と比較して,提案手法は冗長な準備コストを排除し,空間的入力サイズと対数的にスケールし,ハイブリッド量子古典機械学習パイプラインへの直接統合を可能にする。
この研究は、量子畳み込みニューラルネットワークとデータ駆動型量子推論の新しい可能性を開く、量子強化された特徴抽出へのスケーラブルで物理的に実現可能な経路を提供する。
関連論文リスト
- Optimization and Synthesis of Quantum Circuits with Global Gates [44.99833362998488]
我々は、イオントラップハードウェアに存在するGlobal Molmer-Sorensenゲートのようなグローバルな相互作用を用いて量子回路を最適化し、合成する。
このアルゴリズムはZX計算に基づいており、係留ゲートをGlobal MolmerSorensenゲートにグループ化する特別な回路抽出ルーチンを使用する。
我々は,このアルゴリズムを様々な回路でベンチマークし,最新ハードウェアによる性能向上の方法を示す。
論文 参考訳(メタデータ) (2025-07-28T10:25:31Z) - Entanglement scaling in matrix product state representation of smooth functions and their shallow quantum circuit approximations [0.28917933888634956]
マトリックス積状態(MPS)法は、浅い量子回路を構築する上で最も有望な手法として現れた。
入力関数の滑らかさに依存するMPS表現における結合間の絡み合いの崩壊に対する厳密な展開を導出する。
我々は、量子回路を浅く正確に符号化する改良されたMPSベースのアルゴリズムを構築した。
論文 参考訳(メタデータ) (2024-12-06T17:31:35Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Non-Unitary Quantum Machine Learning [0.0]
量子機械学習における通常のユニタリ制約を克服する確率的量子アルゴリズムをいくつか導入する。
また, 変分アンサッツ層間の残差は, それらを含むモデルにおける不規則な台地を防止できることが示唆された。
また、Schur-Weyl双対性による点雲データに対する新たな回転不変符号化を実証する。
論文 参考訳(メタデータ) (2024-05-27T17:42:02Z) - Adaptive Circuit Learning of Born Machine: Towards Realization of
Amplitude Embedding and Data Loading [7.88657961743755]
本稿では,ACLBM(Adaptive Circuit Learning of Born Machine)という新しいアルゴリズムを提案する。
我々のアルゴリズムは、ターゲット状態に存在する複雑な絡み合いを最もよく捉える2ビットの絡み合いゲートを選択的に統合するように調整されている。
実験結果は、振幅埋め込みによる実世界のデータの符号化における我々のアプローチの習熟度を裏付けるものである。
論文 参考訳(メタデータ) (2023-11-29T16:47:31Z) - Explainable quantum regression algorithm with encoded data structure [0.0]
本稿では,最初の解釈可能な量子回帰アルゴリズムを構築する。
符号化されたデータ構造は回帰マップの計算の時間的複雑さを減少させる。
我々は、中性冷原子とイオンに実装されたマルチキュービットゲートを持つ潜在的な量子ユーティリティを想定する。
論文 参考訳(メタデータ) (2023-07-07T00:30:16Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,この問題に対するアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
我々の量子シンセサイザーの目的は、ユーザーが高レベルなコマンドを使って量子アルゴリズムを実装できるようにすることである。
量子アルゴリズムを実装するための提案手法は、機械学習の分野で潜在的に有効である。
論文 参考訳(メタデータ) (2022-09-20T06:25:47Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
特定の演算を行うユニタリ行列が与えられた場合、等価な量子回路を得るのは非自明な作業である。
量子ウォーカーのコイン、トフォリゲート、フレドキンゲートの3つの問題が研究されている。
提案したアルゴリズムは量子回路の分解に効率的であることが証明され、汎用的なアプローチとして、利用可能な計算力によってのみ制限される。
論文 参考訳(メタデータ) (2021-06-06T13:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。