論文の概要: Bag of Coins: A Statistical Probe into Neural Confidence Structures
- arxiv url: http://arxiv.org/abs/2507.19774v1
- Date: Sat, 26 Jul 2025 03:54:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:56.176588
- Title: Bag of Coins: A Statistical Probe into Neural Confidence Structures
- Title(参考訳): Bag of Coins: 神経信頼構造に関する統計的研究
- Authors: Agnideep Aich, Ashit Baran Aich, Md Monzur Murshed, Sameera Hewage, Bruce Wade,
- Abstract要約: Bag-of-Coins (BoC) テストは、分類器の内部の整合性を調べる。
ViT(Vision Transformers)では、BoC出力は最先端の信頼性スコアとして機能し、ほぼ完璧なキャリブレーションを達成する。
ResNetのような畳み込みニューラルネットワーク(CNN)では、モデルの予測と内部ロジット構造との深い矛盾が明らかになる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern neural networks, despite their high accuracy, often produce poorly calibrated confidence scores, limiting their reliability in high-stakes applications. Existing calibration methods typically post-process model outputs without interrogating the internal consistency of the predictions themselves. In this work, we introduce a novel, non-parametric statistical probe, the Bag-of-Coins (BoC) test, that examines the internal consistency of a classifier's logits. The BoC test reframes confidence estimation as a frequentist hypothesis test: does the model's top-ranked class win 1-v-1 contests against random competitors at a rate consistent with its own stated softmax probability? When applied to modern deep learning architectures, this simple probe reveals a fundamental dichotomy. On Vision Transformers (ViTs), the BoC output serves as a state-of-the-art confidence score, achieving near-perfect calibration with an ECE of 0.0212, an 88% improvement over a temperature-scaled baseline. Conversely, on Convolutional Neural Networks (CNNs) like ResNet, the probe reveals a deep inconsistency between the model's predictions and its internal logit structure, a property missed by traditional metrics. We posit that BoC is not merely a calibration method, but a new diagnostic tool for understanding and exposing the differing ways that popular architectures represent uncertainty.
- Abstract(参考訳): 現代のニューラルネットワークは、高い精度にもかかわらず、しばしばキャリブレーションの低い信頼性スコアを生成し、高い精度のアプリケーションにおける信頼性を制限している。
既存のキャリブレーション手法は通常、予測自体の内部の一貫性を疑うことなく、プロセス後のモデル出力を出力する。
本研究では,非パラメトリックな統計プローブであるBag-of-Coins (BoC) テストを導入する。
BoCテストは、信頼度推定を頻繁な仮説テストとして再設定する: モデルのトップランククラスは、自身のソフトマックス確率と一致した速度で、ランダムな競合相手に対して1-v-1コンテストに勝利するだろうか?
現代のディープラーニングアーキテクチャに適用すると、この単純なプローブは基本的な二分法を明らかにする。
ViT(Vision Transformers)では、BoC出力は最先端の信頼性スコアとして機能し、ECEの0.0212でほぼ完璧なキャリブレーションを実現し、温度スケールベースラインよりも88%向上した。
逆に、ResNetのような畳み込みニューラルネットワーク(CNN)では、モデルの予測と内部ロジット構造との深い矛盾が明らかになっている。
BoCは単なる校正方法ではなく、一般的なアーキテクチャが不確実性を表す異なる方法を理解し、公開するための新しい診断ツールであると仮定する。
関連論文リスト
- Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - Towards Calibrated Deep Clustering Network [60.71776081164377]
ディープクラスタリングでは、特定のクラスタに属するサンプルに対する推定信頼度はその実際の予測精度を大きく上回る。
推定された信頼度と実際の精度を効果的にキャリブレーションできる新しいデュアルヘッド(キャリブレーションヘッドとクラスタリングヘッド)深層クラスタリングモデルを提案する。
提案したキャリブレーション深層クラスタリングモデルでは, キャリブレーション誤差の予測値において, 最先端の深部クラスタリング手法を平均5倍に越えるだけでなく, クラスタリング精度も大幅に向上する。
論文 参考訳(メタデータ) (2024-03-04T11:23:40Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Calibrating Deep Neural Networks using Explicit Regularisation and
Dynamic Data Pruning [25.982037837953268]
ディープニューラルネットワーク(DNN)は誤った予測をしがちで、予測された出力と関連する信頼スコアのミスマッチを示すことが多い。
そこで本研究では,分類損失を伴う新たな正規化手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T05:34:58Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UALは、データ不確実性とモデル不確実性を同時に考慮し、信頼性に配慮した予測を提供することを目的としている。
データ不確実性はサンプル固有のノイズを捕捉する」一方、モデル不確実性はサンプルの予測に対するモデルの信頼を表現している。
論文 参考訳(メタデータ) (2022-10-24T17:53:20Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
不確かさの定量化は、信頼性と信頼性のある機械学習における中心的な課題である。
最適正規化推定器のキャリブレーション曲線において, 分類精度とキャリブレーションのトレードオフを示す。
これは経験的ベイズ法とは対照的であり、高次一般化誤差と過度パラメトリゼーションにもかかわらず、我々の設定では十分に校正されていることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:01:08Z) - Bayesian Confidence Calibration for Epistemic Uncertainty Modelling [4.358626952482686]
キャリブレーション法の不確実性を考慮した信頼度推定手法を提案する。
物体検出校正のための最先端校正性能を実現する。
論文 参考訳(メタデータ) (2021-09-21T10:53:16Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。