Pic2Diagnosis: A Method for Diagnosis of Cardiovascular Diseases from the Printed ECG Pictures
- URL: http://arxiv.org/abs/2507.19961v1
- Date: Sat, 26 Jul 2025 14:21:25 GMT
- Title: Pic2Diagnosis: A Method for Diagnosis of Cardiovascular Diseases from the Printed ECG Pictures
- Authors: Oğuzhan Büyüksolak, İlkay Öksüz,
- Abstract summary: Many disease patterns are derived from outdated datasets and traditional stepwise algorithms with limited accuracy.<n>This study presents a method for direct cardiovascular disease (CVD) diagnosis from ECG images, eliminating the need for digitization.
- Score: 1.1124167550257513
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The electrocardiogram (ECG) is a vital tool for diagnosing heart diseases. However, many disease patterns are derived from outdated datasets and traditional stepwise algorithms with limited accuracy. This study presents a method for direct cardiovascular disease (CVD) diagnosis from ECG images, eliminating the need for digitization. The proposed approach utilizes a two-step curriculum learning framework, beginning with the pre-training of a classification model on segmentation masks, followed by fine-tuning on grayscale, inverted ECG images. Robustness is further enhanced through an ensemble of three models with averaged outputs, achieving an AUC of 0.9534 and an F1 score of 0.7801 on the BHF ECG Challenge dataset, outperforming individual models. By effectively handling real-world artifacts and simplifying the diagnostic process, this method offers a reliable solution for automated CVD diagnosis, particularly in resource-limited settings where printed or scanned ECG images are commonly used. Such an automated procedure enables rapid and accurate diagnosis, which is critical for timely intervention in CVD cases that often demand urgent care.
Related papers
- A Deep Learning Pipeline Using Synthetic Data to Improve Interpretation of Paper ECG Images [8.559073054541754]
Cardiovascular diseases (CVDs) are the leading global cause of death, and early detection is essential to improve patient outcomes.<n>We propose a deep learning framework designed specifically to classify paper-like ECG images into five main diagnostic categories.<n>Our method was the winning entry to the 2024 British Heart Foundation Open Data Science Challenge.
arXiv Detail & Related papers (2025-07-29T16:16:17Z) - Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Sensing Cardiac Health Across Scenarios and Devices: A Multi-Modal Foundation Model Pretrained on Heterogeneous Data from 1.7 Million Individuals [36.08910150609342]
We present a cardiac sensing foundation model (CSFM) that learns unified representations from vast, heterogeneous health records.<n>Our model is pretrained on an innovative multi-modal integration of data from multiple large-scale datasets.<n> CSFM consistently outperforms traditional one-modal-one-task approaches.
arXiv Detail & Related papers (2025-06-23T20:58:12Z) - Integrating electrocardiogram and fundus images for early detection of cardiovascular diseases [1.732458484303615]
Cardiovascular diseases (CVD) are a predominant health concern globally, emphasizing the need for advanced diagnostic techniques.<n>We present an avant-garde methodology that synergistically integrates ECG readings and fundus images to facilitate the early disease tagging as well as triaging of the CVDs in the order of disease priority.<n>Preliminary tests yielded a commendable accuracy of 84 percent, underscoring the potential of this combined diagnostic strategy.
arXiv Detail & Related papers (2025-03-31T07:53:36Z) - AnyECG: Foundational Models for Multitask Cardiac Analysis in Real-World Settings [34.078819572852446]
Electrocardiogram (ECG) is highly sensitive in detecting acute heart attacks.<n>This paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data.
arXiv Detail & Related papers (2024-11-17T17:32:58Z) - A foundation model for generalizable disease diagnosis in chest X-ray images [40.9095393430871]
We introduce CXRBase, a foundational model designed to learn versatile representations from unlabelled CXR images.
CXRBase is trained on a substantial dataset of 1.04 million unlabelled CXR images.
It is fine-tuned with labeled data to enhance its performance in disease detection.
arXiv Detail & Related papers (2024-10-11T14:41:27Z) - VizECGNet: Visual ECG Image Network for Cardiovascular Diseases Classification with Multi-Modal Training and Knowledge Distillation [0.7405975743268344]
In practice, ECG data is stored as either digitized signals or printed images.
We propose VizECGNet, which uses only printed ECG graphics to determine the prognosis of multiple cardiovascular diseases.
arXiv Detail & Related papers (2024-08-06T01:34:43Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
This research addresses the challenges of diagnosing chest X-rays (CXRs) at low resolutions.
High-resolution CXR imaging is crucial for identifying small but critical anomalies, such as nodules or opacities.
This paper presents the Multilevel Collaborative Attention Knowledge (MLCAK) method.
arXiv Detail & Related papers (2024-05-22T06:10:54Z) - Predicting risk of cardiovascular disease using retinal OCT imaging [40.71667870702634]
Cardiovascular diseases (CVD) are the leading cause of death globally.<n>Optical coherence tomography ( OCT) has gained recognition as a potential tool for early CVD risk prediction.<n>We investigated the potential of OCT as an additional imaging technique to predict future CVD events.
arXiv Detail & Related papers (2024-03-26T14:42:46Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Analysis of Digitalized ECG Signals Based on Artificial Intelligence and
Spectral Analysis Methods Specialized in ARVC [0.0]
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that appears between the second and forth decade of a patient's life.
The effective and punctual diagnosis of this disease based on Electrocardiograms (ECGs) could have a vital role in reducing premature cardiovascular mortality.
arXiv Detail & Related papers (2022-02-28T13:12:50Z) - Momentum Contrastive Learning for Few-Shot COVID-19 Diagnosis from Chest
CT Images [41.73507451077361]
We propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training.
We use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets.
Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
arXiv Detail & Related papers (2020-06-16T10:14:58Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.