Quantum Imaging of Ferromagnetic van der Waals Magnetic Domain Structures at Ambient Conditions
- URL: http://arxiv.org/abs/2507.20245v1
- Date: Sun, 27 Jul 2025 12:15:25 GMT
- Title: Quantum Imaging of Ferromagnetic van der Waals Magnetic Domain Structures at Ambient Conditions
- Authors: Bindu, Amandeep Singh, Amir Hen, Lukas Drago Cavar, Sebastian Maria Ulrich Schultheis, Shira Yochelis, Yossi Paltiel, Andrew F. May, Angela Wittmann, Mathias Klaui, Dmitry Budker, Hadar Steinberg, Nir Bar-Gill,
- Abstract summary: 2D van der Waals magnetic materials have attracted significant attention both from a fundamental perspective and for potential applications.<n>Here we address key questions using a nitrogen-vacancy center based quantum magnetic microscope.<n>We employ spatially resolved measures, including magnetization variance and cross-correlation, and find a significant spread in transition temperature yet with no clear dependence on thickness down to 15nm.
- Score: 3.4385973449503853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently discovered 2D van der Waals magnetic materials, and specifically Iron-Germanium-Telluride ($\rm Fe_{5}GeTe_{2}$), have attracted significant attention both from a fundamental perspective and for potential applications. Key open questions concern their domain structure and magnetic phase transition temperature as a function of sample thickness and external field, as well as implications for integration into devices such as magnetic memories and logic. Here we address key questions using a nitrogen-vacancy center based quantum magnetic microscope, enabling direct imaging of the magnetization of $\rm Fe_{5}GeTe_{2}$ at sub-micron spatial resolution as a function of temperature, magnetic field, and thickness. We employ spatially resolved measures, including magnetization variance and cross-correlation, and find a significant spread in transition temperature yet with no clear dependence on thickness down to 15 nm. We also identify previously unknown stripe features in the optical as well as magnetic images, which we attribute to modulations of the constituting elements during crystal synthesis and subsequent oxidation. Our results suggest that the magnetic anisotropy in this material does not play a crucial role in their magnetic properties, leading to a magnetic phase transition of $\rm Fe_{5}GeTe_{2}$ which is largely thickness-independent down to 15 nm. Our findings could be significant in designing future spintronic devices, magnetic memories and logic with 2D van der Waals magnetic materials.
Related papers
- Observation of Magnetic Devil's Staircase-Like Behavior in Quasiperiodic Qubit Lattices [55.2480439325792]
devil's staircase (DS) phenomenon is a fractal response of magnetization to external fields.<n>We uncover a wealth of abrupt magnetic transitions driven by increasing external magnetic fields within a simple yet effective Ising-model framework.<n>Our results challenge the prevailing view that DS behavior is limited to periodic systems.
arXiv Detail & Related papers (2025-07-24T21:39:06Z) - Controllable and Continuous Quantum Phase Transitions in Intrinsic Magnetic Topological Insulator [50.54133633499971]
We study the intrinsic magnetic topological material MnBi2Te4 in which the heavy n-type doping features are strongly suppressed.<n>Based on angle-resolved photoemission spectroscopy, transport measurements, and first-principles calculations, we reveal two magnetism-induced TPTs.<n>Our work paves the way for the realization of intrinsic magnetic topological states in MnBi2Te4 family and provides an ideal platform for achieving controllable and continuous TPTs.
arXiv Detail & Related papers (2025-03-08T03:46:54Z) - Nanoscale magnetism and magnetic phase transitions in atomically thin
CrSBr [0.0]
Van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention.
The remarkably stable high-$T_c$ vdW magnet CrSBr has the potential to overcome these key shortcomings.
Our work will enable the engineering of exotic electronic and magnetic phases in CrSBr and the realisation of novel nanomagnetic devices based on this highly promising vdW magnet.
arXiv Detail & Related papers (2023-12-14T19:00:02Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - AC susceptometry of 2D van der Waals magnets enabled by the coherent
control of quantum sensors [4.103177660092151]
We coherently control the NV center's spin precession to achieve ultra-sensitive ac susceptometry of a 2D ferromagnet.
We show that domain wall mobility is enhanced in ultrathin CrBr3, with minimal decrease for frequencies exceeding hundreds of kilohertz.
Our technique extends NV magnetometry to the multi-functional ac and dc magnetic characterization of wide-ranging spintronic materials at the nanoscale.
arXiv Detail & Related papers (2021-05-17T17:28:46Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Picoscale Magnetoelasticity Governs Heterogeneous Magnetic Domains in a
Noncentrosymmetric Ferromagnetic Weyl Semimetal [0.0]
We use a scanning SQUID microscope to image spontaneous magnetization and magnetic susceptibility of CeAlSi.
metastable domains embody a type of frustrated or glassy magnetic phase, with excitations that may be of an emergent and exotic nature.
We show how these domains form, how they interact, and how they can be manipulated or stabilized with estimated lattice strains on picometer levels.
arXiv Detail & Related papers (2020-11-12T02:26:07Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Ferromagnetic Gyroscopes for Tests of Fundamental Physics [49.853792068336034]
A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque.
We model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization.
arXiv Detail & Related papers (2020-10-17T07:13:50Z) - Magnetic domains and domain wall pinning in two-dimensional ferromagnets
revealed by nanoscale imaging [1.614014297785306]
We employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains.
The high spatial resolution of this technique enables imaging of magnetic domains and allows to resolve domain walls pinned by defects.
arXiv Detail & Related papers (2020-09-28T16:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.