Nanoscale magnetism and magnetic phase transitions in atomically thin
CrSBr
- URL: http://arxiv.org/abs/2312.09279v1
- Date: Thu, 14 Dec 2023 19:00:02 GMT
- Title: Nanoscale magnetism and magnetic phase transitions in atomically thin
CrSBr
- Authors: M\"arta A. Tschudin, David A. Broadway, Patrick Reiser, Carolin
Schrader, Evan J. Telford, Boris Gross, Jordan Cox, Adrien E. E. Dubois,
Daniel G. Chica, Ricardo Rama-Eiroa, Elton J. G. Santos, Martino Poggio,
Michael E. Ziebel, Cory R. Dean, Xavier Roy, Patrick Maletinsky
- Abstract summary: Van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention.
The remarkably stable high-$T_c$ vdW magnet CrSBr has the potential to overcome these key shortcomings.
Our work will enable the engineering of exotic electronic and magnetic phases in CrSBr and the realisation of novel nanomagnetic devices based on this highly promising vdW magnet.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since their first observation in 2017, atomically thin van der Waals (vdW)
magnets have attracted significant fundamental, and application-driven
attention. However, their low ordering temperatures, $T_c$, sensitivity to
atmospheric conditions and difficulties in preparing clean large-area samples
still present major limitations to further progress. The remarkably stable
high-$T_c$ vdW magnet CrSBr has the potential to overcome these key
shortcomings, but its nanoscale properties and rich magnetic phase diagram
remain poorly understood. Here we use single spin magnetometry to
quantitatively characterise saturation magnetization, magnetic anisotropy
constants, and magnetic phase transitions in few-layer CrSBr by direct magnetic
imaging. We show pristine magnetic phases, devoid of defects on micron
length-scales, and demonstrate remarkable air-stability down the monolayer
limit. We address the spin-flip transition in bilayer CrSBr by direct imaging
of the emerging antiferromagnetic (AFM) to ferromagnetic (FM) phase wall and
elucidate the magnetic properties of CrSBr around its ordering temperature. Our
work will enable the engineering of exotic electronic and magnetic phases in
CrSBr and the realisation of novel nanomagnetic devices based on this highly
promising vdW magnet.
Related papers
- Diverging entanglement of critical magnons in easy-axis antiferromagnets [0.5910597773909121]
We study the instability of antiferromagnets with easy-axis anisotropy under a magnetic field.
Near the phase boundary, the entanglement between the sublattice magnons diverges due to the interplay among antiferromagnetic exchange interaction, anisotropy, and magnetic field.
arXiv Detail & Related papers (2024-11-04T18:00:03Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Magnetic-field-induced cavity protection for intersubband polaritons [52.77024349608834]
We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity.
The magnetic field changes the lineshape of the intersubband optical transition due to the roughness of the interface of the quantum well from a Lorentzian to a Gaussian one.
arXiv Detail & Related papers (2022-10-14T18:00:03Z) - Layer-dependent interlayer antiferromagnetic spin reorientation in
air-stable semiconductor CrSBr [13.368466574719537]
Magnetic van der Waals (vdW) materials offer a fantastic platform to investigate and exploit rich spin stabilized in reduced dimensions.
One tantalizing magnetic order is the interlayer antiferromagnetism in A-type vdW antiferromagnet.
Here, we report the layer-dependent interlayer antiferromagnetic reorientation in air-stable semiconductor CrSBr.
arXiv Detail & Related papers (2022-05-11T12:55:59Z) - Nanoscale magnetism probed in a matter-wave interferometer [0.0]
We study alkali atoms, organic radicals and fullerenes in the same device, with magnetic moments ranging from a Bohr magneton to less than a nuclear magneton.
We find evidence for magnetization of a supersonic beam of organic radicals and, most notably, observe a strong magnetic response of a thermal C$_60$ beam consistent with high-temperature atom-like deflection of rotational magnetic moments.
arXiv Detail & Related papers (2022-03-22T16:42:48Z) - AC susceptometry of 2D van der Waals magnets enabled by the coherent
control of quantum sensors [4.103177660092151]
We coherently control the NV center's spin precession to achieve ultra-sensitive ac susceptometry of a 2D ferromagnet.
We show that domain wall mobility is enhanced in ultrathin CrBr3, with minimal decrease for frequencies exceeding hundreds of kilohertz.
Our technique extends NV magnetometry to the multi-functional ac and dc magnetic characterization of wide-ranging spintronic materials at the nanoscale.
arXiv Detail & Related papers (2021-05-17T17:28:46Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.