論文の概要: Approximating Full Conformal Prediction for Neural Network Regression with Gauss-Newton Influence
- arxiv url: http://arxiv.org/abs/2507.20272v1
- Date: Sun, 27 Jul 2025 13:34:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:57.366667
- Title: Approximating Full Conformal Prediction for Neural Network Regression with Gauss-Newton Influence
- Title(参考訳): Gauss-Newton によるニューラルネットワーク回帰の完全等角予測
- Authors: Dharmesh Tailor, Alvaro H. C. Correia, Eric Nalisnick, Christos Louizos,
- Abstract要約: 我々は、保留データなしで、保留後のニューラルネットワーク回帰器の予測間隔を構築する。
ガウス・ニュートンの影響を利用して1回、局所摂動モデルパラメータを訓練する。
- 参考スコア(独自算出の注目度): 8.952347049759094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification is an important prerequisite for the deployment of deep learning models in safety-critical areas. Yet, this hinges on the uncertainty estimates being useful to the extent the prediction intervals are well-calibrated and sharp. In the absence of inherent uncertainty estimates (e.g. pretrained models predicting only point estimates), popular approaches that operate post-hoc include Laplace's method and split conformal prediction (split-CP). However, Laplace's method can be miscalibrated when the model is misspecified and split-CP requires sample splitting, and thus comes at the expense of statistical efficiency. In this work, we construct prediction intervals for neural network regressors post-hoc without held-out data. This is achieved by approximating the full conformal prediction method (full-CP). Whilst full-CP nominally requires retraining the model for every test point and candidate label, we propose to train just once and locally perturb model parameters using Gauss-Newton influence to approximate the effect of retraining. Coupled with linearization of the network, we express the absolute residual nonconformity score as a piecewise linear function of the candidate label allowing for an efficient procedure that avoids the exhaustive search over the output space. On standard regression benchmarks and bounding box localization, we show the resulting prediction intervals are locally-adaptive and often tighter than those of split-CP.
- Abstract(参考訳): 不確実性定量化は、深層学習モデルを安全クリティカル領域に展開する上で重要な前提条件である。
しかし、これは予測間隔が十分に校正され鋭い程度に有用である不確実性推定に基づいている。
固有不確実性推定(例えば、点推定のみを予測する事前訓練されたモデル)が存在しない場合、ポストホックを動作させる一般的なアプローチには、ラプラス法や分割共形予測(split-CP)がある。
しかし、モデルが不特定であり、分割-CPがサンプル分割を必要とする場合、Laplaceの手法は誤校正され、したがって統計的効率が犠牲になる。
本研究では,ホールドアウトデータのないニューラルネットワーク回帰器の予測間隔を構築する。
これは完全共形予測法(full-CP)を近似することで達成される。
完全CPでは、各試験点と候補ラベルのモデルの再学習が必要とされているが、ガウス・ニュートンの影響を利用して1回、局所的な摂動モデルパラメータをトレーニングし、再学習の効果を近似することを提案する。
ネットワークの線形化と組み合わさって、絶対残差不整合スコアを候補ラベルの一括線形関数として表現し、出力空間の徹底的な探索を回避する効率的な手順を実現する。
標準回帰ベンチマークとバウンディングボックスのローカライゼーションでは、予測間隔は局所的に適応的であり、スプリットCPよりもしばしば厳密であることを示す。
関連論文リスト
- Deep Limit Model-free Prediction in Regression [0.0]
本稿では,DNN(Deep Neural Network)に基づくモデルフリーアプローチにより,一般的な回帰条件下での点予測と予測間隔を実現する。
提案手法は,特に最適点予測において,他のDNN法に比べて安定かつ正確である。
論文 参考訳(メタデータ) (2024-08-18T16:37:53Z) - Normalizing Flows for Conformal Regression [0.0]
Conformal Prediction (CP)アルゴリズムは、ラベル付きデータに基づいて出力を校正することで予測モデルの不確実性を推定する。
キャリブレーション過程をトレーニングすることで、間隔をローカライズする一般的なスキームを提案する。
PapadopoulosらによるError Reweighting CPアルゴリズム(2008年)とは異なり、このフレームワークは名目と経験的条件の妥当性のギャップを推定できる。
論文 参考訳(メタデータ) (2024-06-05T15:04:28Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Domain-adaptive and Subgroup-specific Cascaded Temperature Regression
for Out-of-distribution Calibration [16.930766717110053]
本稿では, メタセットをベースとした新しい温度回帰法を提案し, ポストホックキャリブレーション法を提案する。
予測されたカテゴリと信頼度に基づいて,各メタセットをサブグループに分割し,多様な不確実性を捉える。
回帰ネットワークは、カテゴリ特化および信頼レベル特化スケーリングを導出し、メタセット間のキャリブレーションを達成するように訓練される。
論文 参考訳(メタデータ) (2024-02-14T14:35:57Z) - Regression Trees for Fast and Adaptive Prediction Intervals [2.6763498831034043]
本稿では,局所的なカバレッジ保証を伴う回帰問題に対して,予測間隔を調整するための一連の手法を提案する。
回帰木とランダムフォレストを適合度スコアでトレーニングすることで分割を作成する。
提案手法は多種多様な適合性スコアや予測設定に適用できるため,多種多様である。
論文 参考訳(メタデータ) (2024-02-12T01:17:09Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
不確実性定量化は機械学習において重要な課題である。
本稿では,BLL を用いた NN の対数乗算可能性の再構成を行い,バックプロパゲーションを用いた効率的なトレーニングを実現する。
論文 参考訳(メタデータ) (2023-02-21T20:23:56Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。