論文の概要: WBHT: A Generative Attention Architecture for Detecting Black Hole Anomalies in Backbone Networks
- arxiv url: http://arxiv.org/abs/2507.20373v1
- Date: Sun, 27 Jul 2025 18:22:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:57.479667
- Title: WBHT: A Generative Attention Architecture for Detecting Black Hole Anomalies in Backbone Networks
- Title(参考訳): WBHT:バックボーンネットワークにおけるブラックホール異常検出のための生成注意アーキテクチャ
- Authors: Kiymet Kaya, Elif Ak, Sule Gunduz Oguducu,
- Abstract要約: ブラックホール(BH)異常は、障害通知なしでパケットロスを引き起こし、接続を中断し、金銭的損失をもたらす。
WBHTは、生成モデリング、シーケンシャルラーニング、アテンションメカニズムを組み合わせて、BH異常検出を改善する。
実世界のネットワークデータに基づいてテストした結果、WBHTは既存のモデルを上回っ、F1スコアを大幅に改善した。
- 参考スコア(独自算出の注目度): 0.49157446832511503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the Wasserstein Black Hole Transformer (WBHT) framework for detecting black hole (BH) anomalies in communication networks. These anomalies cause packet loss without failure notifications, disrupting connectivity and leading to financial losses. WBHT combines generative modeling, sequential learning, and attention mechanisms to improve BH anomaly detection. It integrates a Wasserstein generative adversarial network with attention mechanisms for stable training and accurate anomaly identification. The model uses long-short-term memory layers to capture long-term dependencies and convolutional layers for local temporal patterns. A latent space encoding mechanism helps distinguish abnormal network behavior. Tested on real-world network data, WBHT outperforms existing models, achieving significant improvements in F1 score (ranging from 1.65% to 58.76%). Its efficiency and ability to detect previously undetected anomalies make it a valuable tool for proactive network monitoring and security, especially in mission-critical networks.
- Abstract(参考訳): 通信ネットワークにおけるブラックホール(BH)異常を検出するためのWBHT(Warerstein Black Hole Transformer)フレームワークを提案する。
これらの異常は、障害通知なしでパケットロスを引き起こし、接続を中断し、金銭的損失をもたらす。
WBHTは、生成モデリング、シーケンシャルラーニング、アテンションメカニズムを組み合わせて、BH異常検出を改善する。
安定したトレーニングと正確な異常識別のための注意機構を備えたワッサーシュタイン生成対向ネットワークを統合している。
このモデルは、長期のメモリ層を使用して、長期の依存関係と局所的な時間パターンのための畳み込みレイヤをキャプチャする。
潜時空間符号化機構は異常なネットワークの挙動を識別するのに役立つ。
WBHTは実世界のネットワークデータでテストされ、既存のモデルよりも優れており、F1スコア(1.65%から58.76%)を大幅に改善した。
その効率性と、これまで検出されていなかった異常を検出する能力は、特にミッションクリティカルネットワークにおいて、積極的なネットワーク監視とセキュリティのための貴重なツールとなる。
関連論文リスト
- Spectral Feature Extraction for Robust Network Intrusion Detection Using MFCCs [0.4779196219827506]
本稿では,Mel- frequency cepstral coefficients (MFCC) とResNet-18を用いて,IoTネットワークトラフィックの異常を識別する手法を提案する。
我々のアプローチは、MFCCの強みとResNet-18の堅牢な特徴抽出機能を組み合わせることで、異常検出のための強力なフレームワークを提供する。
論文 参考訳(メタデータ) (2025-07-14T01:25:26Z) - A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network [9.031267813814118]
アテンションベースのトランスフォーマーは、長期依存を捕捉する能力により、無線センサネットワーク(WSN)のタイミング異常検出において重要な役割を担っている。
本稿では,周波数領域の特徴を動的グラフニューラルネットワーク(GNN)と統合したWSN異常検出手法を提案する。
論文 参考訳(メタデータ) (2025-02-25T04:34:18Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
サブ構造認識(ARISE)による属性付きネットワーク上の新しいグラフ異常検出フレームワークを提案する。
ARISEは、異常を識別するグラフのサブ構造に焦点を当てている。
実験により、ARISEは最先端の属性付きネットワーク異常検出(ANAD)アルゴリズムと比較して、検出性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-28T12:17:40Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - ARCADE: Adversarially Regularized Convolutional Autoencoder for Network
Anomaly Detection [0.0]
ARCADEと呼ばれる、教師なしの異常に基づくディープラーニング検出システム。
リソース制約のある環境でのオンライン検出に適した畳み込みオートエンコーダ(AE)を提案する。
論文 参考訳(メタデータ) (2022-05-03T11:47:36Z) - Self-Supervised and Interpretable Anomaly Detection using Network
Transformers [1.0705399532413615]
本稿では,異常検出のためのNetwork Transformer(NeT)モデルを提案する。
NeTは、解釈性を改善するために、通信ネットワークのグラフ構造を組み込んでいる。
提案手法は, 産業制御システムにおける異常検出の精度を評価することによって検証された。
論文 参考訳(メタデータ) (2022-02-25T22:05:59Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach [40.992167455141946]
本稿では,IIoTにおける時系列データ検出のための,新しい通信効率の高いデバイス上でのフェデレーション学習(FL)に基づく深層異常検出フレームワークを提案する。
まず、分散エッジデバイスが協調して異常検出モデルを訓練し、その一般化能力を向上させるためのFLフレームワークを導入する。
次に,アテンションメカニズムに基づく畳み込みニューラルネットワーク-Long Short Term Memory (AMCNN-LSTM) モデルを提案し,異常を正確に検出する。
第三に,提案したフレームワークを産業異常検出のタイムラインに適用するために,トップテキスト選択に基づく勾配圧縮機構を提案する。
論文 参考訳(メタデータ) (2020-07-19T16:47:26Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。