MeLA: A Metacognitive LLM-Driven Architecture for Automatic Heuristic Design
- URL: http://arxiv.org/abs/2507.20541v2
- Date: Sun, 03 Aug 2025 07:31:26 GMT
- Title: MeLA: A Metacognitive LLM-Driven Architecture for Automatic Heuristic Design
- Authors: Zishang Qiu, Xinan Chen, Long Chen, Ruibin Bai,
- Abstract summary: MeLA is a Metacognitive LLM-Driven Architecture that presents a new paradigm for Automatic Heuristic Design (AHD)<n>MeLA evolves the instructional prompts used to guide a Large Language Model (LLM) in generating theses.<n>This process of "prompt evolution" is driven by a novel metacognitive framework.
- Score: 8.025492778235199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces MeLA, a Metacognitive LLM-Driven Architecture that presents a new paradigm for Automatic Heuristic Design (AHD). Traditional evolutionary methods operate directly on heuristic code; in contrast, MeLA evolves the instructional prompts used to guide a Large Language Model (LLM) in generating these heuristics. This process of "prompt evolution" is driven by a novel metacognitive framework where the system analyzes performance feedback to systematically refine its generative strategy. MeLA's architecture integrates a problem analyzer to construct an initial strategic prompt, an error diagnosis system to repair faulty code, and a metacognitive search engine that iteratively optimizes the prompt based on heuristic effectiveness. In comprehensive experiments across both benchmark and real-world problems, MeLA consistently generates more effective and robust heuristics, significantly outperforming state-of-the-art methods. Ultimately, this research demonstrates the profound potential of using cognitive science as a blueprint for AI architecture, revealing that by enabling an LLM to metacognitively regulate its problem-solving process, we unlock a more robust and interpretable path to AHD.
Related papers
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
This work presents the first structured taxonomy and analysis of discrete tokenization methods designed for large language models (LLMs)<n>We categorize 8 representative VQ variants that span classical and modern paradigms and analyze their algorithmic principles, training dynamics, and integration challenges with LLM pipelines.<n>We identify key challenges including codebook collapse, unstable gradient estimation, and modality-specific encoding constraints.
arXiv Detail & Related papers (2025-07-21T10:52:14Z) - An Intelligent Fault Self-Healing Mechanism for Cloud AI Systems via Integration of Large Language Models and Deep Reinforcement Learning [1.1149781202731994]
We propose an Intelligent Fault Self-Healing Mechanism (IFSHM) that integrates Large Language Model (LLM) and Deep Reinforcement Learning (DRL)<n>IFSHM aims to realize a fault recovery framework with semantic understanding and policy optimization capabilities in cloud AI systems.<n> Experimental results on the cloud fault injection platform show that compared with the existing DRL and rule methods, the IFSHM framework shortens the system recovery time by 37% with unknown fault scenarios.
arXiv Detail & Related papers (2025-06-09T04:14:05Z) - CALM: Co-evolution of Algorithms and Language Model for Automatic Heuristic Design [11.639825726501659]
Large language models (LLMs) can autonomously discover high-performings at a fraction of the traditional cost.<n>We propose a hybrid framework that combines verbal and numerical guidance.<n>Our method outperforms state-of-the-art (SOTA) baselines across various optimization tasks.
arXiv Detail & Related papers (2025-05-18T07:48:47Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [89.50068130832635]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation MLLMs by multimodal knowledge.<n>We propose Chain-of-Description for step-by-step visual understanding and integrate structured Chain-of-Thought (CoT) reasoning to support in-depth multimodal reasoning.<n>Experiments demonstrate SIcog's effectiveness in developing MLLMs with enhanced multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - ALPINE: Unveiling the Planning Capability of Autoregressive Learning in Language Models [48.559185522099625]
Planning is a crucial element of both human intelligence and contemporary large language models (LLMs)
This paper investigates the emergence of planning capabilities in Transformer-based LLMs via their next-word prediction mechanisms.
arXiv Detail & Related papers (2024-05-15T09:59:37Z) - Unleashing the potential of prompt engineering for large language models [1.6006550105523192]
Review explores the pivotal role of prompt engineering in unleashing the capabilities of Large Language Models (LLMs)<n>Examines both foundational and advanced methodologies of prompt engineering, including techniques such as self-consistency, chain-of-thought, and generated knowledge.<n>Discusses the aspect of AI security, particularly adversarial attacks that exploit vulnerabilities in prompt engineering.
arXiv Detail & Related papers (2023-10-23T09:15:18Z) - Synergistic Integration of Large Language Models and Cognitive
Architectures for Robust AI: An Exploratory Analysis [12.9222727028798]
This paper explores the integration of two AI subdisciplines employed in the development of artificial agents that exhibit intelligent behavior: Large Language Models (LLMs) and Cognitive Architectures (CAs)
We present three integration approaches, each grounded in theoretical models and supported by preliminary empirical evidence.
These approaches aim to harness the strengths of both LLMs and CAs, while mitigating their weaknesses, thereby advancing the development of more robust AI systems.
arXiv Detail & Related papers (2023-08-18T21:42:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.