論文の概要: Optimizing Tensor Network Partitioning using Simulated Annealing
- arxiv url: http://arxiv.org/abs/2507.20667v1
- Date: Mon, 28 Jul 2025 09:43:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.067901
- Title: Optimizing Tensor Network Partitioning using Simulated Annealing
- Title(参考訳): Simulated Annealing を用いたテンソルネットワーク分割の最適化
- Authors: Manuel Geiger, Qunsheng Huang, Christian B. Mendl,
- Abstract要約: テンソルネットワークは、例えば古典的な(強く相関した)量子システムのシミュレーションにおいて、貴重なツールであることが証明されている。
システムのサイズが大きくなるにつれて、より大きなテンソルネットワークの契約は計算的に要求されるようになる。
計算コストとメモリコストは、選択したパーティショニング戦略に非常に敏感であるため、複数のノードに効率的に収縮タスクを分散することが重要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor networks have proven to be a valuable tool, for instance, in the classical simulation of (strongly correlated) quantum systems. As the size of the systems increases, contracting larger tensor networks becomes computationally demanding. In this work, we study distributed memory architectures intended for high-performance computing implementations to solve this task. Efficiently distributing the contraction task across multiple nodes is critical, as both computational and memory costs are highly sensitive to the chosen partitioning strategy. While prior work has employed general-purpose hypergraph partitioning algorithms, these approaches often overlook the specific structure and cost characteristics of tensor network contractions. We introduce a simulated annealing-based method that iteratively refines the partitioning to minimize the total operation count, thereby reducing time-to-solution. The algorithm is evaluated on MQT Bench circuits and achieves an 8$\times$ average reduction in computational cost and an 8$\times$ average reduction in memory cost compared to a naive partitioning.
- Abstract(参考訳): テンソルネットワークは、例えば古典的な(強く相関した)量子システムのシミュレーションにおいて、貴重なツールであることが証明されている。
システムのサイズが大きくなるにつれて、より大きなテンソルネットワークの契約は計算的に要求されるようになる。
本研究では,この課題を解決するために,高性能コンピューティング実装を目的とした分散メモリアーキテクチャについて検討する。
計算コストとメモリコストは、選択したパーティショニング戦略に非常に敏感であるため、複数のノードに効率的に収縮タスクを分散することが重要である。
従来の研究では汎用ハイパーグラフ分割アルゴリズムが用いられてきたが、これらの手法はテンソルネットワークの収縮の特定の構造とコスト特性を見落としていることが多い。
そこで本研究では, 分割処理を反復的に洗練し, 演算回数を最小化し, 解法までの時間を短縮するシミュレーションアニール法を提案する。
このアルゴリズムはMQT Bench回路上で評価され、計算コストの8$\times$平均削減と、8$\times$メモリコストの8$\times$平均削減を達成する。
関連論文リスト
- Memory-aware Scheduling for Complex Wired Networks with Iterative Graph
Optimization [4.614780125575351]
本稿では,反復グラフ最適化に基づく効率的なメモリ認識スケジューリングフレームワークを提案する。
我々のフレームワークは、スケジューリングの最適性を保ちながらグラフを単純化する反復グラフ融合アルゴリズムを備えている。
論文 参考訳(メタデータ) (2023-08-26T14:52:02Z) - Learning Discrete Weights and Activations Using the Local
Reparameterization Trick [21.563618480463067]
コンピュータビジョンと機械学習では、ニューラルネットワーク推論の計算とメモリ要求を減らすことが重要な課題である。
ネットワークの重みとアクティベーションをバイナライズすることで、計算の複雑さを大幅に減らすことができる。
これにより、低リソースデバイスにデプロイ可能な、より効率的なニューラルネットワーク推論が可能になる。
論文 参考訳(メタデータ) (2023-07-04T12:27:10Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
我々はスケッチを利用した新しい分散Adam型アルゴリズムのクラス(例:SketchedAMSGrad)を提案する。
我々の新しいアルゴリズムは、反復毎に$O(frac1sqrtnT + frac1(k/d)2 T)$の高速収束率を$O(k log(d))$の通信コストで達成する。
論文 参考訳(メタデータ) (2022-10-14T01:42:05Z) - Combinatorial optimization for low bit-width neural networks [23.466606660363016]
低ビット幅のニューラルネットワークは、計算資源を減らすためにエッジデバイスに展開するために広く研究されている。
既存のアプローチでは、2段階の列車・圧縮設定における勾配に基づく最適化に焦点が当てられている。
グリーディ座標降下法とこの新しい手法を組み合わせることで、二項分類タスクにおける競合精度が得られることを示す。
論文 参考訳(メタデータ) (2022-06-04T15:02:36Z) - Towards Optimal VPU Compiler Cost Modeling by using Neural Networks to
Infer Hardware Performances [58.720142291102135]
VPUNN"は低レベルのタスクプロファイリングに基づいてトレーニングされたニューラルネットワークベースのコストモデルである。
これは、IntelのVPUプロセッサのラインにおける最先端のコストモデリングよりも一貫して優れている。
論文 参考訳(メタデータ) (2022-05-09T22:48:39Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z) - Attentive Gaussian processes for probabilistic time-series generation [4.94950858749529]
本稿では,ガウス過程の回帰と組み合わせて実数値列を生成する,計算効率のよいアテンションベースネットワークを提案する。
我々は,GPがフルバッチを用いて訓練されている間,ネットワークのミニバッチトレーニングを可能にするブロックワイズトレーニングアルゴリズムを開発した。
アルゴリズムは収束することが証明され、より良くなくても、見いだされた解の品質に匹敵することを示す。
論文 参考訳(メタデータ) (2021-02-10T01:19:15Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Accelerating Neural Network Inference by Overflow Aware Quantization [16.673051600608535]
ディープニューラルネットワークの重計算を継承することで、その広範な応用が防げる。
トレーニング可能な適応的不動点表現を設計し,オーバーフローを考慮した量子化手法を提案する。
提案手法により,量子化損失を最小限に抑え,最適化された推論性能を得ることができる。
論文 参考訳(メタデータ) (2020-05-27T11:56:22Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。