Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models
- URL: http://arxiv.org/abs/2507.20704v1
- Date: Mon, 28 Jul 2025 10:57:44 GMT
- Title: Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models
- Authors: Gabriel Downer, Sean Craven, Damian Ruck, Jake Thomas,
- Abstract summary: Existing evaluation datasets lean towards text-only prompts, leaving visual vulnerabilities under evaluated.<n>We propose Text2VLM, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats.<n>Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for Visual Language Models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing integration of Visual Language Models (VLMs) into AI systems necessitates robust model alignment, especially when handling multimodal content that combines text and images. Existing evaluation datasets heavily lean towards text-only prompts, leaving visual vulnerabilities under evaluated. To address this gap, we propose \textbf{Text2VLM}, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats, specifically designed to evaluate the resilience of VLMs against typographic prompt injection attacks. The Text2VLM pipeline identifies harmful content in the original text and converts it into a typographic image, creating a multimodal prompt for VLMs. Also, our evaluation of open-source VLMs highlights their increased susceptibility to prompt injection when visual inputs are introduced, revealing critical weaknesses in the current models' alignment. This is in addition to a significant performance gap compared to closed-source frontier models. We validate Text2VLM through human evaluations, ensuring the alignment of extracted salient concepts; text summarization and output classification align with human expectations. Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for VLMs. By enhancing the evaluation of multimodal vulnerabilities, Text2VLM plays a role in advancing the safe deployment of VLMs in diverse, real-world applications.
Related papers
- Multimodal LLMs as Customized Reward Models for Text-to-Image Generation [60.164968941945645]
We introduce LLaVA-Reward, an efficient reward model designed to automatically evaluate text-to-image (T2I) generations across multiple perspectives.<n>LLaVA-Reward directly utilizes the hidden states of multimodal large language models (MLLMs)<n>We train LLaVA-Reward on four evaluation perspectives: text-image alignment, fidelity/artifact, safety, and overall ranking.
arXiv Detail & Related papers (2025-07-28T23:52:53Z) - Security Tensors as a Cross-Modal Bridge: Extending Text-Aligned Safety to Vision in LVLM [40.83149588857177]
Large visual-language models (LVLMs) integrate aligned large language models (LLMs) with visual modules to process multimodal inputs.<n>We introduce security tensors - trainable input vectors applied during inference through either the textual or visual modality.
arXiv Detail & Related papers (2025-07-28T16:59:53Z) - Weighted Multi-Prompt Learning with Description-free Large Language Model Distillation [1.3381749415517021]
New approaches leveraging Large Language Models (LLM) in prompts have been proposed, enhancing robustness to unseen and diverse data.<n>Existing methods typically extract text-based responses (i.e., descriptions) from LLM to incorporate into prompts.<n>We propose Description-free Multi-prompt Learning(DeMul), a novel method that eliminates the process of extracting descriptions and instead directly distills knowledge from LLM into prompts.
arXiv Detail & Related papers (2025-07-09T07:55:25Z) - Better Reasoning with Less Data: Enhancing VLMs Through Unified Modality Scoring [26.174094671736686]
We propose a novel quality-driven data selection pipeline for visual instruction tuning datasets.<n>It integrates a cross-modality assessment framework that first assigns each data entry to its appropriate vision-language task.<n>It generates general and task-specific captions, and evaluates the alignment, clarity, task rarity, text coherence, and image clarity of each entry.
arXiv Detail & Related papers (2025-06-10T04:04:58Z) - PARC: A Quantitative Framework Uncovering the Symmetries within Vision Language Models [17.522361689805724]
Vision language models (VLMs) respond to user-crafted text prompts and visual inputs.<n>It is crucial to determine whether VLMs inherit this instability to varying prompts.<n>We introduce PARC (Prompt Analysis via Reliability and agnostic), a VLM prompt sensitivity analysis framework.
arXiv Detail & Related papers (2025-06-03T19:42:32Z) - Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation [88.78166077081912]
We introduce a multimodal unlearning benchmark, UnLOK-VQA, and an attack-and-defense framework to evaluate methods for deleting specific multimodal knowledge from MLLMs.<n>Our results show multimodal attacks outperform text- or image-only ones, and that the most effective defense removes answer information from internal model states.
arXiv Detail & Related papers (2025-05-01T01:54:00Z) - T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models [88.63040835652902]
Text to video models are vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content.<n>We propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats.<n>Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses.
arXiv Detail & Related papers (2025-04-22T01:18:42Z) - Text Speaks Louder than Vision: ASCII Art Reveals Textual Biases in Vision-Language Models [93.46875303598577]
Vision-language models (VLMs) have advanced rapidly in processing multimodal information, but their ability to reconcile conflicting signals remains underexplored.<n>This work investigates how VLMs process ASCII art, a unique medium where textual elements collectively form visual patterns, potentially creating semantic-visual conflicts.
arXiv Detail & Related papers (2025-04-02T10:47:07Z) - Unlocking the Capabilities of Large Vision-Language Models for Generalizable and Explainable Deepfake Detection [18.125287697902813]
Current Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in understanding multimodal data.<n>We present a novel framework that unlocks LVLMs' potential capabilities for deepfake detection.
arXiv Detail & Related papers (2025-03-19T03:20:03Z) - TrojVLM: Backdoor Attack Against Vision Language Models [50.87239635292717]
This study introduces TrojVLM, the first exploration of backdoor attacks aimed at Vision Language Models (VLMs)
TrojVLM inserts predetermined target text into output text when encountering poisoned images.
A novel semantic preserving loss is proposed to ensure the semantic integrity of the original image content.
arXiv Detail & Related papers (2024-09-28T04:37:09Z) - Progressive Multi-modal Conditional Prompt Tuning [92.50645776024624]
Pre-trained vision-language models (VLMs) have shown remarkable generalization capabilities via prompting.
We propose a novel method, Progressive Multi-modal conditional Prompt Tuning (ProMPT)
ProMPT exploits a recurrent structure, optimizing and aligning V-L features by iteratively utilizing image and current encoding information.
arXiv Detail & Related papers (2024-04-18T02:40:31Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We present the Draw-and-Understand framework, exploring how to integrate visual prompting understanding capabilities into Multimodal Large Language Models (MLLMs)<n>Visual prompts allow users to interact through multi-modal instructions, enhancing the models' interactivity and fine-grained image comprehension.<n>In this framework, we propose a general architecture adaptable to different pre-trained MLLMs, enabling it to recognize various types of visual prompts.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
We propose a contrastive learning framework, termed Document Object COntrastive learning (DoCo)
DoCo leverages an auxiliary multimodal encoder to obtain the features of document objects and align them to the visual features generated by the vision encoder of Large Visual-Language Models (LVLMs)
We demonstrate that the proposed DoCo serves as a plug-and-play pre-training method, which can be employed in the pre-training of various LVLMs without inducing any increase in computational complexity during the inference process.
arXiv Detail & Related papers (2024-02-29T10:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.