PARC: A Quantitative Framework Uncovering the Symmetries within Vision Language Models
- URL: http://arxiv.org/abs/2506.14808v1
- Date: Tue, 03 Jun 2025 19:42:32 GMT
- Title: PARC: A Quantitative Framework Uncovering the Symmetries within Vision Language Models
- Authors: Jenny Schmalfuss, Nadine Chang, Vibashan VS, Maying Shen, Andres Bruhn, Jose M. Alvarez,
- Abstract summary: Vision language models (VLMs) respond to user-crafted text prompts and visual inputs.<n>It is crucial to determine whether VLMs inherit this instability to varying prompts.<n>We introduce PARC (Prompt Analysis via Reliability and agnostic), a VLM prompt sensitivity analysis framework.
- Score: 17.522361689805724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision language models (VLMs) respond to user-crafted text prompts and visual inputs, and are applied to numerous real-world problems. VLMs integrate visual modalities with large language models (LLMs), which are well known to be prompt-sensitive. Hence, it is crucial to determine whether VLMs inherit this instability to varying prompts. We therefore investigate which prompt variations VLMs are most sensitive to and which VLMs are most agnostic to prompt variations. To this end, we introduce PARC (Prompt Analysis via Reliability and Calibration), a VLM prompt sensitivity analysis framework built on three pillars: (1) plausible prompt variations in both the language and vision domain, (2) a novel model reliability score with built-in guarantees, and (3) a calibration step that enables dataset- and prompt-spanning prompt variation analysis. Regarding prompt variations, PARC's evaluation shows that VLMs mirror LLM language prompt sensitivity in the vision domain, and most destructive variations change the expected answer. Regarding models, outstandingly robust VLMs among 22 evaluated models come from the InternVL2 family. We further find indications that prompt sensitivity is linked to training data. The code will be at https://github.com/NVlabs/PARC.
Related papers
- Text2VLM: Adapting Text-Only Datasets to Evaluate Alignment Training in Visual Language Models [0.0]
Existing evaluation datasets lean towards text-only prompts, leaving visual vulnerabilities under evaluated.<n>We propose Text2VLM, a novel multi-stage pipeline that adapts text-only datasets into multimodal formats.<n>Text2VLM provides a scalable tool for comprehensive safety assessment, contributing to the development of more robust safety mechanisms for Visual Language Models.
arXiv Detail & Related papers (2025-07-28T10:57:44Z) - Response Wide Shut? Surprising Observations in Basic Vision Language Model Capabilities [54.94982467313341]
Vision-language Models (VLMs) have emerged as general-purpose tools for addressing a variety of complex computer vision problems.<n>We set out to understand the limitations of SoTA VLMs on fundamental visual tasks by constructing a series of tests that probe which components of design, specifically, may be lacking.
arXiv Detail & Related papers (2025-07-10T15:26:41Z) - Hidden in plain sight: VLMs overlook their visual representations [48.83628674170634]
We compare vision language models (VLMs) to their visual encoders to understand their ability to integrate across these modalities.<n>We find that VLMs perform substantially worse than their visual encoders, dropping to near-chance performance.
arXiv Detail & Related papers (2025-06-09T17:59:54Z) - Unlocking the Capabilities of Large Vision-Language Models for Generalizable and Explainable Deepfake Detection [18.125287697902813]
Current Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in understanding multimodal data.<n>We present a novel framework that unlocks LVLMs' potential capabilities for deepfake detection.
arXiv Detail & Related papers (2025-03-19T03:20:03Z) - Semantic-Clipping: Efficient Vision-Language Modeling with Semantic-Guidedd Visual Selection [53.558449071113245]
Vision-Language Models (VLMs) leverage aligned visual encoders to transform images into visual tokens, allowing them to be processed similarly to text by the backbone large language model (LLM)<n>Recent advancements in vision-language modeling introduce image cropping techniques that feed all encoded sub-images into the model.<n>We propose a lightweight, universal framework that seamlessly integrates with existing VLMs to enhance their ability to process finegrained details.
arXiv Detail & Related papers (2025-03-14T18:33:31Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.<n>We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.<n>We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension [95.63899307791665]
Vision Value Model (VisVM) can guide VLM inference-time search to generate responses with better visual comprehension.<n>In this paper, we present VisVM that can guide VLM inference-time search to generate responses with better visual comprehension.
arXiv Detail & Related papers (2024-12-04T20:35:07Z) - DARE: Diverse Visual Question Answering with Robustness Evaluation [16.87867803628065]
Vision Language Models (VLMs) extend remarkable capabilities of text-only large language models and vision-only models.
They struggle with a number of crucial vision-language (VL) reasoning abilities such as counting and spatial reasoning.
We introduce DARE, Diverse Visual Question Answering with Robustness Evaluation.
arXiv Detail & Related papers (2024-09-26T16:31:50Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Benchmarking Zero-Shot Recognition with Vision-Language Models: Challenges on Granularity and Specificity [45.86789047206224]
This paper presents novel benchmarks for evaluating vision-language models (VLMs) in zero-shot recognition.
Our benchmarks test VLMs' consistency in understanding concepts across semantic granularity levels and their response to varying text specificity.
Findings show that VLMs favor moderately fine-grained concepts and struggle with specificity, often misjudging texts that differ from their training data.
arXiv Detail & Related papers (2023-06-28T09:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.