論文の概要: AR-LIF: Adaptive reset leaky integrate-and-fire neuron for spiking neural networks
- arxiv url: http://arxiv.org/abs/2507.20746v2
- Date: Mon, 01 Sep 2025 08:03:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-03 14:24:52.546394
- Title: AR-LIF: Adaptive reset leaky integrate-and-fire neuron for spiking neural networks
- Title(参考訳): AR-LIF: ニューラルネットワークをスパイクするための適応リセット型インテリジェンス・アンド・ファイアニューロン
- Authors: Zeyu Huang, Wei Meng, Quan Liu, Kun Chen, Li Ma,
- Abstract要約: スパイクニューラルネットワークは、イベント駆動性のため、低エネルギー消費を提供する。
我々は、入力、出力、リセットの関係を確立する適応リセットニューロンを設計する。
実験結果から, 省エネ性を維持しつつ, 優れた性能が得られた。
- 参考スコア(独自算出の注目度): 19.595600625488004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks offer low energy consumption due to their event-driven nature. Beyond binary spike outputs, their intrinsic floating-point dynamics merit greater attention. Neuronal threshold levels and reset modes critically determine spike count and timing. Hard reset cause information loss, while soft reset apply uniform treatment to neurons. To address these issues, we design an adaptive reset neuron that establishes relationships between inputs, outputs, and reset, while integrating a simple yet effective threshold adjustment strategy. Experimental results demonstrate that our method achieves excellent performance while maintaining lower energy consumption. In particular, it attains state-of-the-art accuracy on Tiny-ImageNet and CIFAR10-DVS. Codes are available at https://github.com/2ephyrus/AR-LIF.
- Abstract(参考訳): スパイクニューラルネットワークは、イベント駆動性のため、低エネルギー消費を提供する。
二分スパイク出力以外にも、固有の浮動小数点ダイナミクスはより注目に値する。
神経閾値レベルとリセットモードはスパイク数とタイミングを決定的に決定する。
ハードリセットは情報損失を引き起こし、ソフトリセットは神経細胞に均一な治療を施す。
これらの問題に対処するために、我々は、単純で効果的なしきい値調整戦略を統合しつつ、入力、出力、リセット間の関係を確立する適応リセットニューロンを設計する。
実験結果から, 省エネ性を維持しつつ, 優れた性能が得られた。
特に、Tiny-ImageNetとCIFAR10-DVSの最先端の精度を実現している。
コードはhttps://github.com/2ephyrus/AR-LIFで公開されている。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Using Linear Regression for Iteratively Training Neural Networks [4.873362301533824]
ニューラルネットワークの重みとバイアスを学習するための単純な線形回帰に基づくアプローチを提案する。
このアプローチは、より大きく、より複雑なアーキテクチャに向けられている。
論文 参考訳(メタデータ) (2023-07-11T11:53:25Z) - NeuralFuse: Learning to Recover the Accuracy of Access-Limited Neural Network Inference in Low-Voltage Regimes [50.00272243518593]
ディープラーニング(Deep Neural Network, DNN)は、機械学習においてユビキタスになったが、そのエネルギー消費は問題の多いままである。
我々は低電圧状態におけるエネルギー精度のトレードオフを処理する新しいアドオンモジュールであるNeuralFuseを開発した。
1%のビットエラー率で、NeuralFuseはアクセスエネルギーを最大24%削減し、精度を最大57%向上させることができる。
論文 参考訳(メタデータ) (2023-06-29T11:38:22Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Synaptic Stripping: How Pruning Can Bring Dead Neurons Back To Life [0.0]
我々は、致命的な神経細胞問題に対処する手段として、シナプスストリッピングを導入する。
トレーニング中に問題のある接続を自動的に取り除くことで、死んだ神経細胞を再生することができる。
我々は,ネットワーク幅と深さの関数として,これらのダイナミクスを研究するために,いくつかのアブレーション研究を行っている。
論文 参考訳(メタデータ) (2023-02-11T23:55:50Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークの代替となる。
本研究は,隠されたニューロンを含むすべてのニューロンの所望のスパイク活性を導出する方法である欲求バックプロパゲーションを提示する。
我々はMNISTとFashion-MNISTを分類するために3層ネットワークを訓練し、それぞれ98.41%と87.56%の精度に達した。
論文 参考訳(メタデータ) (2022-11-10T08:32:13Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Receding Neuron Importances for Structured Pruning [11.375436522599133]
構造化プルーニングは、重要でないニューロンを特定して除去することで、ネットワークを効率的に圧縮する。
境界スケーリングパラメータを持つ単純なBatchNorm変動を導入し、低重要性のニューロンのみを抑制する新しい正規化項を設計する。
我々は、この方法でトレーニングされたニューラルネットワークを、より大きく、より少ない劣化で刈り取ることができることを示した。
論文 参考訳(メタデータ) (2022-04-13T14:08:27Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Plateau Phenomenon in Gradient Descent Training of ReLU networks:
Explanation, Quantification and Avoidance [0.0]
一般に、ニューラルネットワークは勾配型最適化法によって訓練される。
トレーニング開始時に損失関数は急速に低下するが,比較的少数のステップの後に著しく低下する。
本研究の目的は,高原現象の根本原因の同定と定量化である。
論文 参考訳(メタデータ) (2020-07-14T17:33:26Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。