LargeMvC-Net: Anchor-based Deep Unfolding Network for Large-scale Multi-view Clustering
- URL: http://arxiv.org/abs/2507.20980v2
- Date: Fri, 01 Aug 2025 05:21:32 GMT
- Title: LargeMvC-Net: Anchor-based Deep Unfolding Network for Large-scale Multi-view Clustering
- Authors: Shide Du, Chunming Wu, Zihan Fang, Wendi Zhao, Yilin Wu, Changwei Wang, Shiping Wang,
- Abstract summary: LargeMvC-Net is a novel deep network architecture for anchor-based multi-view clustering.<n>The proposed model decomposes the anchor-based clustering process into three modules.<n>Experiments on several large-scale multi-view benchmarks show that LargeMvC-Net consistently outperforms state-of-the-art methods in terms of both effectiveness and scalability.
- Score: 13.805932688128053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep anchor-based multi-view clustering methods enhance the scalability of neural networks by utilizing representative anchors to reduce the computational complexity of large-scale clustering. Despite their scalability advantages, existing approaches often incorporate anchor structures in a heuristic or task-agnostic manner, either through post-hoc graph construction or as auxiliary components for message passing. Such designs overlook the core structural demands of anchor-based clustering, neglecting key optimization principles. To bridge this gap, we revisit the underlying optimization problem of large-scale anchor-based multi-view clustering and unfold its iterative solution into a novel deep network architecture, termed LargeMvC-Net. The proposed model decomposes the anchor-based clustering process into three modules: RepresentModule, NoiseModule, and AnchorModule, corresponding to representation learning, noise suppression, and anchor indicator estimation. Each module is derived by unfolding a step of the original optimization procedure into a dedicated network component, providing structural clarity and optimization traceability. In addition, an unsupervised reconstruction loss aligns each view with the anchor-induced latent space, encouraging consistent clustering structures across views. Extensive experiments on several large-scale multi-view benchmarks show that LargeMvC-Net consistently outperforms state-of-the-art methods in terms of both effectiveness and scalability.
Related papers
- Self-Enhanced Image Clustering with Cross-Modal Semantic Consistency [57.961869351897384]
We propose a framework based on cross-modal semantic consistency for efficient image clustering.<n>Our framework first builds a strong foundation via Cross-Modal Semantic Consistency.<n>In the first stage, we train lightweight clustering heads to align with the rich semantics of the pre-trained model.<n>In the second stage, we introduce a Self-Enhanced fine-tuning strategy.
arXiv Detail & Related papers (2025-08-02T08:12:57Z) - Towards Learnable Anchor for Deep Multi-View Clustering [49.767879678193005]
In this paper, we propose the Deep Multi-view Anchor Clustering (DMAC) model that performs clustering in linear time.<n>With the optimal anchors, the full sample graph is calculated to derive a discriminative embedding for clustering.<n>Experiments on several datasets demonstrate superior performance and efficiency of DMAC compared to state-of-the-art competitors.
arXiv Detail & Related papers (2025-03-16T09:38:11Z) - Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images [43.152314090830174]
We introduce an innovative clustering architecture for hyperspectral images (HSI) by unfolding an iterative solver based on the Alternating Direction Method of Multipliers (ADMM) for sparse subspace clustering.
Our approach captures well the structural characteristics of HSI data by employing the K nearest neighbors algorithm as part of a structure preservation module.
arXiv Detail & Related papers (2024-04-10T15:51:46Z) - Scalable Multi-view Clustering via Explicit Kernel Features Maps [20.610589722626074]
A growing awareness of multi-view learning is a consequence of the increasing prevalence of multiple views in real-world applications.
An efficient optimization strategy is proposed, leveraging kernel feature maps to reduce the computational burden while maintaining good clustering performance.
We conduct extensive experiments on real-world benchmark networks of various sizes in order to evaluate the performance of our algorithm against state-of-the-art multi-view subspace clustering methods and attributed-network multi-view approaches.
arXiv Detail & Related papers (2024-02-07T12:35:31Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
We propose a novel multi-view clustering model, named Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)
The main objective of our approach is to enhance the clustering performance by leveraging co-training in two distinct spaces.
Our algorithm has an approximate linear computational complexity, which guarantees its successful application on large-scale datasets.
arXiv Detail & Related papers (2024-01-28T16:30:13Z) - MFPNet: Multi-scale Feature Propagation Network For Lightweight Semantic
Segmentation [5.58363644107113]
We propose a novel lightweight segmentation architecture, called Multi-scale Feature Propagation Network (Net)
We design a robust-Decoder structure featuring symmetrical residual blocks that consist of flexible bottleneck residual modules (BRMs)
Taking benefit of their capacity to model latent long-range contextual relationships, we leverage Graph Convolutional Networks (GCNs) to facilitate multiscale feature propagation between the BRM blocks.
arXiv Detail & Related papers (2023-09-10T02:02:29Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
We propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG)
Specifically, EMVGC-LG jointly optimize anchor construction and graph learning to enhance the clustering quality.
In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number.
arXiv Detail & Related papers (2023-08-31T12:12:30Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
This paper presents a new deep clustering approach termed image clustering with contrastive learning and multi-scale graph convolutional networks (IcicleGCN)
Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.
arXiv Detail & Related papers (2022-07-14T19:16:56Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Structural Deep Clustering Network [45.370272344031285]
We propose a Structural Deep Clustering Network (SDCN) to integrate the structural information into deep clustering.
Specifically, we design a delivery operator to transfer the representations learned by autoencoder to the corresponding GCN layer.
In this way, the multiple structures of data, from low-order to high-order, are naturally combined with the multiple representations learned by autoencoder.
arXiv Detail & Related papers (2020-02-05T04:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.