論文の概要: Rewrite-to-Rank: Optimizing Ad Visibility via Retrieval-Aware Text Rewriting
- arxiv url: http://arxiv.org/abs/2507.21099v1
- Date: Thu, 03 Jul 2025 05:36:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-03 20:19:02.865595
- Title: Rewrite-to-Rank: Optimizing Ad Visibility via Retrieval-Aware Text Rewriting
- Title(参考訳): Rewrite-to-Rank: Retrieval-Aware Text Rewriteによる広告可視性最適化
- Authors: Chloe Ho, Ishneet Sukhvinder Singh, Diya Sharma, Tanvi Reddy Anumandla, Michael Lu, Vasu Sharma, Kevin Zhu,
- Abstract要約: LLMによる広告の書き直しが検索システムにおけるランキングをいかに向上させるかを検討する。
セマンティックな関連性とコンテンツ忠実度をカスタマイズした,教師付き微調整フレームワークを提案する。
- 参考スコア(独自算出の注目度): 2.743338598862049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Search algorithms and user query relevance have given LLMs the ability to return relevant information, but the effect of content phrasing on ad visibility remains underexplored. We investigate how LLM-based rewriting of advertisements can improve their ranking in retrieval systems and inclusion in generated LLM responses, without modifying the retrieval model itself. We introduce a supervised fine-tuning framework with a custom loss balancing semantic relevance and content fidelity. To evaluate effectiveness, we propose two metrics: DeltaMRR@K (ranking improvement) and DeltaDIR@K (inclusion frequency improvement). Our approach presents a scalable method to optimize ad phrasing, enhancing visibility in retrieval-based LLM workflows. Experiments across both instruction-based and few-shot prompting demonstrate that PPO trained models outperform both prompt engineering and supervised fine-tuning in most cases, achieving up to a 2.79 DeltaDIR@5 and 0.0073 DeltaMRR@5 in instruction-based prompting. These results highlight the importance of how the ad is written before retrieval and prompt format and reinforcement learning in effective ad rewriting for LLM integrated retrieval systems.
- Abstract(参考訳): 検索アルゴリズムとユーザクエリ関連性により、LLMは関連する情報を返すことができるようになったが、広告の可視性に対するコンテンツ表現の影響は未解明のままである。
LLMに基づく広告の書き直しは、検索モデル自体を変更することなく、検索システムにおけるランク付けと生成されたLLM応答への含意をいかに改善できるかを検討する。
セマンティックな関連性とコンテンツ忠実度をカスタマイズした,教師付き微調整フレームワークを提案する。
有効性を評価するために、DeltaMRR@K(改善度)とDeltaDIR@K(包摂周波数改善度)の2つの指標を提案する。
提案手法は,広告表現を最適化し,検索に基づくLLMワークフローの可視性を向上させるスケーラブルな手法を提案する。
命令ベースのプロンプトと少数ショットプロンプトの両方の実験により、PPOが訓練したモデルは、命令ベースのプロンプトにおいて2.79 DeltaDIR@5と0.0073 DeltaMRR@5を達成し、迅速なエンジニアリングと教師付き微調整の両方に優れていたことが証明された。
これらの結果は,LLM統合検索システムにおいて,広告が検索の前にどのように書き込まれるか,形式や強化学習が有効な広告書き換えにおいて重要であることを強調している。
関連論文リスト
- Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
大規模言語モデル(LLM)は、従来の手法を進化させるために情報検索に広く統合されている。
エージェント検索フレームワークであるEXSEARCHを提案する。
4つの知識集約ベンチマークの実験では、EXSEARCHはベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2025-05-26T15:27:55Z) - RALLRec+: Retrieval Augmented Large Language Model Recommendation with Reasoning [22.495874056980824]
本稿では,Representation Learning and textbfReasoning empowered search-textbfAugmented textbfLarge textbfLanguage model textbfRecommendation (RALLRec+)を提案する。
論文 参考訳(メタデータ) (2025-03-26T11:03:34Z) - RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning [24.28601381739682]
大規模言語モデル (LLM) は、ユーザの振る舞いを理解するためのレコメンデーションシステムに統合されている。
既存のRAGメソッドは主にテキストのセマンティクスに依存しており、しばしば最も関連性の高い項目を組み込むことができない。
検索強化大言語モデル推薦(RALLRec)のための表現学習を提案する。
論文 参考訳(メタデータ) (2025-02-10T02:15:12Z) - ICLERB: In-Context Learning Embedding and Reranker Benchmark [45.40331863265474]
In-Context Learning (ICL)により、大規模言語モデルでは、関連する情報でプロンプトを条件付けすることで、新しいタスクを実行できる。
従来の検索手法は意味的関連性を重視し,検索を探索問題として扱う。
ICLタスクの効用を最大化する文書を選択することを目的としたレコメンデーション問題として、ICLのリフレーミング検索を提案する。
論文 参考訳(メタデータ) (2024-11-28T06:28:45Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
まず、第1生成識別子の出力ロジットを活用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチであるFIRSTを紹介する。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
以上の結果から,LLMリランカーはクロスエンコーダに比べて強い蒸留信号を提供できることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T21:27:50Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
大規模言語モデル(LLM)は、幅広い汎用タスクを解く際、印象的なゼロショット能力を示した。
LLMは時間的情報の認識と利用に不足しており、シーケンシャルなデータの理解を必要とするタスクではパフォーマンスが悪い。
LLMに基づくシーケンシャルレコメンデーションのために、歴史的相互作用の中で時間情報を利用する3つのプロンプト戦略を提案する。
論文 参考訳(メタデータ) (2024-05-05T00:21:26Z) - LLM In-Context Recall is Prompt Dependent [0.0]
これを行うモデルの能力は、実世界のアプリケーションにおける実用性と信頼性に大きな影響を及ぼす。
本研究は, LLMのリコール能力がプロンプトの内容に影響を及ぼすだけでなく, トレーニングデータのバイアスによって損なわれる可能性があることを示す。
論文 参考訳(メタデータ) (2024-04-13T01:13:59Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
大規模言語モデル(LLM)は、検索対象のパイプラインで強力なブラックボックスリーダーを動作させる。
この作業では、検索拡張LDMに対する以前の検索テーマ読み込みの代わりに、新しいフレームワークであるRewrite-Retrieve-Readを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。