論文の概要: Large Language Models for Wireless Communications: From Adaptation to Autonomy
- arxiv url: http://arxiv.org/abs/2507.21524v1
- Date: Tue, 29 Jul 2025 06:21:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:55.757886
- Title: Large Language Models for Wireless Communications: From Adaptation to Autonomy
- Title(参考訳): 無線通信のための大規模言語モデル:適応から自律へ
- Authors: Le Liang, Hao Ye, Yucheng Sheng, Ouya Wang, Jiacheng Wang, Shi Jin, Geoffrey Ye Li,
- Abstract要約: 大規模言語モデル(LLM)は推論、一般化、ゼロショット学習において前例のない能力を提供する。
本稿では,3つの方向にわたる無線システム変換におけるLCMの役割について考察する。
- 参考スコア(独自算出の注目度): 47.40285060307752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large language models (LLMs) has revolutionized artificial intelligence, offering unprecedented capabilities in reasoning, generalization, and zero-shot learning. These strengths open new frontiers in wireless communications, where increasing complexity and dynamics demand intelligent and adaptive solutions. This article explores the role of LLMs in transforming wireless systems across three key directions: adapting pretrained LLMs for core communication tasks, developing wireless-specific foundation models to balance versatility and efficiency, and enabling agentic LLMs with autonomous reasoning and coordination capabilities. We highlight recent advances, practical case studies, and the unique benefits of LLM-based approaches over traditional methods. Finally, we outline open challenges and research opportunities, including multimodal fusion, collaboration with lightweight models, and self-improving capabilities, charting a path toward intelligent, adaptive, and autonomous wireless networks of the future.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は人工知能に革命をもたらし、推論、一般化、ゼロショット学習における前例のない能力を提供している。
これらの強みにより、無線通信における新たなフロンティアが開かれ、複雑さとダイナミクスの増大はインテリジェントで適応的なソリューションを必要とする。
本稿では,無線システムにおけるLLMの役割について考察する: コア通信タスクに事前訓練されたLLMを適用すること,多目的性と効率のバランスをとるために無線固有の基礎モデルを開発すること,自律的推論と調整機能を備えたエージェント型LLMを実現すること。
我々は、最近の進歩、実践事例研究、従来の手法に対するLCMベースのアプローチの独特な利点を強調した。
最後に,マルチモーダル融合,軽量モデルとのコラボレーション,自己改善機能など,オープンな課題と研究機会について概説する。
関連論文リスト
- Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey [62.697565282841026]
強化学習(RL)に基づく大規模言語モデル(LLM)が注目されている。
無線ネットワークは、RLベースのLLMの強化を必要とする。
無線ネットワークは、RLベースのLLMの効率的なトレーニング、デプロイメント、分散推論のための重要な基盤を提供する。
論文 参考訳(メタデータ) (2025-03-13T01:59:11Z) - NetOrchLLM: Mastering Wireless Network Orchestration with Large Language Models [11.015852090523229]
大規模言語モデル(LLM)は、洗練された自然言語理解機能を活用することで、様々な領域に革命をもたらした。
本稿では、様々な無線固有モデルをシームレスにオーケストレーションする無線ネットワークORCHestrator LLMフレームワークであるNetORCHLLMを提案する。
アプローチの実用性を示す包括的なフレームワークが導入された。
論文 参考訳(メタデータ) (2024-12-13T12:48:15Z) - WirelessLLM: Empowering Large Language Models Towards Wireless Intelligence [16.722524706176767]
大規模言語モデル(LLM)は、無線通信システムに革命をもたらす可能性への関心を喚起している。
無線システム用LLMの既存の研究は、通信言語理解の直接的な応用に限られている。
本稿では,無線通信ネットワークのユニークな課題と要件に対処するため,LLMの適応と拡張のための総合的なフレームワークである WirelessLLM を提案する。
論文 参考訳(メタデータ) (2024-05-27T11:18:25Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
大規模言語モデル(LLM)は、無線ネットワークにおいて大きな変革をもたらしている。
無線環境では、LLMのトレーニングはセキュリティとプライバシに関する重大な課題に直面している。
本稿では,無線ネットワークにおけるLLMのトレーニング段階の体系的解析を行い,事前学習,命令チューニング,アライメントチューニングを行う。
論文 参考訳(メタデータ) (2024-04-20T02:30:21Z) - Large Multi-Modal Models (LMMs) as Universal Foundation Models for
AI-Native Wireless Systems [57.41621687431203]
大規模言語モデル (LLM) と基礎モデルは6Gシステムのゲームチェンジャーとして最近注目されている。
本稿では,人工知能(AI)ネイティブネットワークの展開に適したユニバーサルファンデーションモデルを設計するための包括的ビジョンを提案する。
論文 参考訳(メタデータ) (2024-01-30T00:21:41Z) - Large Generative AI Models for Telecom: The Next Big Thing? [7.36678071967351]
大型のGenAIモデルは、自律的無線ネットワークの新しい時代を開くことを想定している。
本稿では,大規模なGenAIモデルをTelecomドメインに統合することで実現可能な機会を広げることを目的としている。
論文 参考訳(メタデータ) (2023-06-17T03:45:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。