論文の概要: Cyst-X: AI-Powered Pancreatic Cancer Risk Prediction from Multicenter MRI in Centralized and Federated Learning
- arxiv url: http://arxiv.org/abs/2507.22017v1
- Date: Tue, 29 Jul 2025 17:06:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:56.767406
- Title: Cyst-X: AI-Powered Pancreatic Cancer Risk Prediction from Multicenter MRI in Centralized and Federated Learning
- Title(参考訳): Cyst-X: 集中学習とフェデレーション学習におけるマルチセンターMRIによるAIによる膵癌のリスク予測
- Authors: Hongyi Pan, Gorkem Durak, Elif Keles, Deniz Seyithanoglu, Zheyuan Zhang, Alpay Medetalibeyoglu, Halil Ertugrul Aktas, Andrea Mia Bejar, Ziliang Hong, Yavuz Taktak, Gulbiz Dagoglu Kartal, Mehmet Sukru Erturk, Timurhan Cebeci, Maria Jaramillo Gonzalez, Yury Velichko, Lili Zhao, Emil Agarunov, Federica Proietto Salanitri, Concetto Spampinato, Pallavi Tiwari, Ziyue Xu, Sachin Jambawalikar, Ivo G. Schoots, Marco J. Bruno, Chenchang Huang, Candice Bolan, Tamas Gonda, Frank H. Miller, Rajesh N. Keswani, Michael B. Wallace, Ulas Bagci,
- Abstract要約: 膵癌は2030年までに西欧諸国で2番目に死亡率の高い悪性腫瘍になると予想されている。
Cystic-Xは、マルチセンターMRIデータを使用してIPMN悪性度を予測するAIフレームワークである。
- 参考スコア(独自算出の注目度): 6.438326994525642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pancreatic cancer is projected to become the second-deadliest malignancy in Western countries by 2030, highlighting the urgent need for better early detection. Intraductal papillary mucinous neoplasms (IPMNs), key precursors to pancreatic cancer, are challenging to assess with current guidelines, often leading to unnecessary surgeries or missed malignancies. We present Cyst-X, an AI framework that predicts IPMN malignancy using multicenter MRI data, leveraging MRI's superior soft tissue contrast over CT. Trained on 723 T1- and 738 T2-weighted scans from 764 patients across seven institutions, our models (AUC=0.82) significantly outperform both Kyoto guidelines (AUC=0.75) and expert radiologists. The AI-derived imaging features align with known clinical markers and offer biologically meaningful insights. We also demonstrate strong performance in a federated learning setting, enabling collaborative training without sharing patient data. To promote privacy-preserving AI development and improve IPMN risk stratification, the Cyst-X dataset is released as the first large-scale, multi-center pancreatic cysts MRI dataset.
- Abstract(参考訳): 膵がんは2030年までに西欧諸国で2番目に死亡率の高い悪性腫瘍になると予想され、早期発見の急激な必要性が浮き彫りになっている。
膵癌の主要な前駆体である膵管内乳頭粘液性腫瘍(IPMNs)は、現在のガイドラインによる評価が困難であり、しばしば不要な手術や悪性腫瘍の欠如につながる。
我々はマルチセンターMRIデータを用いてIPMNの悪性度を予測するAIフレームワークであるCyst-Xを提案する。
7施設764例から723例のT1-および738例のT2強調スキャンを行った結果,AUC=0.82は,京都のガイドライン(AUC=0.75)と専門放射線技師のどちらよりも有意に優れていた。
AI由来のイメージング機能は、既知の臨床マーカーと一致し、生物学的に意味のある洞察を提供する。
また,連携学習環境において,患者データを共有せずに協調訓練を行うことにより,強いパフォーマンスを示す。
プライバシ保護のAI開発を促進し、IPMNのリスク層化を改善するため、Cyst-Xデータセットは、最初の大規模、マルチセンターの膵嚢胞MRIデータセットとしてリリースされた。
関連論文リスト
- Multimodal MRI-Ultrasound AI for Prostate Cancer Detection Outperforms Radiologist MRI Interpretation: A Multi-Center Study [2.493694664727448]
前立腺病変に対するMRI(pre-biopsy magnetic resonance imaging)の使用が増えている。
MRIで検出された病変は生検中に経直腸超音波(TRUS)画像にマッピングされなければならず、臨床上有意な前立腺癌(CsPCa)を発症する。
本研究では、MRIとTRUS画像シーケンスを統合したマルチモーダルAIフレームワークを体系的に評価し、CsPCa識別を向上する。
論文 参考訳(メタデータ) (2025-01-31T20:04:20Z) - Enhancing Trust in Clinically Significant Prostate Cancer Prediction with Multiple Magnetic Resonance Imaging Modalities [61.36288157482697]
米国では、前立腺がんが男性の死因としては2番目に多く、2024年には35,250人が死亡している。
本稿では,複数のMRIモダリティを組み合わせて深層学習モデルを訓練し,臨床的に有意な前立腺癌予測のためのモデルの信頼性を高めることを検討する。
論文 参考訳(メタデータ) (2024-11-07T12:48:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Leveraging Transformers to Improve Breast Cancer Classification and Risk
Assessment with Multi-modal and Longitudinal Data [3.982926115291704]
マルチモーダルトランス (MMT) はマンモグラフィーと超音波を相乗的に利用するニューラルネットワークである。
MMTは、現在の検査と以前の画像を比較することで、時間的組織変化を追跡する。
5年間のリスク予測では、MMTはAUROCの0.826を達成し、従来のマンモグラフィーベースのリスクモデルより優れている。
論文 参考訳(メタデータ) (2023-11-06T16:01:42Z) - Radiomics Boosts Deep Learning Model for IPMN Classification [3.4659499358648675]
膵管内乳頭粘液性腫瘍 (IPMN) の嚢胞は術前膵管病変であり,膵癌に進展する可能性がある。
本研究では,MRIスキャンからIPMNリスク分類のための新しいコンピュータ支援診断パイプラインを提案する。
論文 参考訳(メタデータ) (2023-09-11T22:41:52Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
前立腺MRIの非対位画像翻訳のための新しいアプローチと臨床的に重要なPCaを分類するための不確実性認識トレーニングアプローチを提案する。
提案手法では,無ペアの3.0T多パラメータ前立腺MRIを1.5Tに翻訳し,利用可能なトレーニングデータを増強する。
実験の結果,提案手法は,従来の研究に比べてAUC(Area Under ROC Curve)を20%以上改善することがわかった。
論文 参考訳(メタデータ) (2023-07-02T05:26:54Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCaは、乳がん患者の画像データであるボリュームCDI$s$の複数機関のオープンソースベンチマークデータセットである。
Cancer-Net BCaは、機械学習の進歩を加速し、がんと戦う臨床医を助ける、グローバルなオープンソースイニシアチブの一部として、一般公開されている。
論文 参考訳(メタデータ) (2023-04-12T05:41:44Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - CorrSigNet: Learning CORRelated Prostate Cancer SIGnatures from
Radiology and Pathology Images for Improved Computer Aided Diagnosis [1.63324350193061]
我々はMRIで前立腺癌を局所化する2段階自動モデルであるCorrSigNetを提案する。
まず,病理組織学的特徴と相関するがんのMRI所見を学習する。
第二に、このモデルは、学習した相関MRI機能を使用して、前立腺がんの局所化のために畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2020-07-31T23:44:25Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
本研究は,腹部CTで膵神経内分泌腫瘍(PNET)を早期に検出するための包括的結果を提示する。
我々の知る限りでは、このタスクは以前まで計算タスクとして研究されていなかった。
我々の手法は最先端のセグメンテーションネットワークより優れ、感度は89.47%、特異性は81.08%である。
論文 参考訳(メタデータ) (2020-04-04T21:21:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。