Strategic Deflection: Defending LLMs from Logit Manipulation
- URL: http://arxiv.org/abs/2507.22160v1
- Date: Tue, 29 Jul 2025 18:46:56 GMT
- Title: Strategic Deflection: Defending LLMs from Logit Manipulation
- Authors: Yassine Rachidy, Jihad Rbaiti, Youssef Hmamouche, Faissal Sehbaoui, Amal El Fallah Seghrouchni,
- Abstract summary: We introduce Strategic Deflection (SDeflection), a defense that redefines the Large Language Models' response to such advanced attacks.<n>Our experiments demonstrate that SDeflection significantly lowers Attack Success Rate (ASR) while maintaining model performance on benign queries.
- Score: 0.3903025330856988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing adoption of Large Language Models (LLMs) in critical areas, ensuring their security against jailbreaking attacks is paramount. While traditional defenses primarily rely on refusing malicious prompts, recent logit-level attacks have demonstrated the ability to bypass these safeguards by directly manipulating the token-selection process during generation. We introduce Strategic Deflection (SDeflection), a defense that redefines the LLM's response to such advanced attacks. Instead of outright refusal, the model produces an answer that is semantically adjacent to the user's request yet strips away the harmful intent, thereby neutralizing the attacker's harmful intent. Our experiments demonstrate that SDeflection significantly lowers Attack Success Rate (ASR) while maintaining model performance on benign queries. This work presents a critical shift in defensive strategies, moving from simple refusal to strategic content redirection to neutralize advanced threats.
Related papers
- Benchmarking Misuse Mitigation Against Covert Adversaries [80.74502950627736]
Existing language model safety evaluations focus on overt attacks and low-stakes tasks.<n>We develop Benchmarks for Stateful Defenses (BSD), a data generation pipeline that automates evaluations of covert attacks and corresponding defenses.<n>Our evaluations indicate that decomposition attacks are effective misuse enablers, and highlight stateful defenses as a countermeasure.
arXiv Detail & Related papers (2025-06-06T17:33:33Z) - The Silent Saboteur: Imperceptible Adversarial Attacks against Black-Box Retrieval-Augmented Generation Systems [101.68501850486179]
We explore adversarial attacks against retrieval-augmented generation (RAG) systems to identify their vulnerabilities.<n>This task aims to find imperceptible perturbations that retrieve a target document, originally excluded from the initial top-$k$ candidate set.<n>We propose ReGENT, a reinforcement learning-based framework that tracks interactions between the attacker and the target RAG.
arXiv Detail & Related papers (2025-05-24T08:19:25Z) - Align in Depth: Defending Jailbreak Attacks via Progressive Answer Detoxification [17.500701903902094]
Large Language Models (LLMs) are vulnerable to jailbreak attacks, which use crafted prompts to elicit toxic responses.<n>This paper proposes DEEPALIGN, a robust defense framework that fine-tunes LLMs to progressively detoxify generated content.
arXiv Detail & Related papers (2025-03-14T08:32:12Z) - REINFORCE Adversarial Attacks on Large Language Models: An Adaptive, Distributional, and Semantic Objective [57.57786477441956]
We propose an adaptive and semantic optimization problem over the population of responses.<n>Our objective doubles the attack success rate (ASR) on Llama3 and increases the ASR from 2% to 50% with circuit breaker defense.
arXiv Detail & Related papers (2025-02-24T15:34:48Z) - Enhancing Model Defense Against Jailbreaks with Proactive Safety Reasoning [21.423429565221383]
Large language models (LLMs) are vital for a wide range of applications yet remain susceptible to jailbreak threats.<n>We propose a novel defense strategy, Safety Chain-of-Thought (SCoT), which harnesses the enhanced textitreasoning capabilities of LLMs for proactive assessment of harmful inputs.
arXiv Detail & Related papers (2025-01-31T14:45:23Z) - You Know What I'm Saying: Jailbreak Attack via Implicit Reference [22.520950422702757]
This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR)
AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context.
Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models.
arXiv Detail & Related papers (2024-10-04T18:42:57Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.<n>We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.<n>We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - Don't Say No: Jailbreaking LLM by Suppressing Refusal [15.350198454170895]
We introduce DSN (Don't Say No) attack, which combines a cosine decay schedule method with refusal suppression to achieve higher success rates.<n>Extensive experiments demonstrate that DSN outperforms baseline attacks and achieves state-of-the-art attack success rates (ASR)
arXiv Detail & Related papers (2024-04-25T07:15:23Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - Hijacking Large Language Models via Adversarial In-Context Learning [10.416972293173993]
In-context learning (ICL) has emerged as a powerful paradigm leveraging LLMs for specific downstream tasks by utilizing labeled examples as demonstrations (demos) in the preconditioned prompts.<n>Existing attacks are either easy to detect, require a trigger in user input, or lack specificity towards ICL.<n>This work introduces a novel transferable prompt injection attack against ICL, aiming to hijack LLMs to generate the target output or elicit harmful responses.
arXiv Detail & Related papers (2023-11-16T15:01:48Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.