Subtyping Breast Lesions via Generative Augmentation based Long-tailed Recognition in Ultrasound
- URL: http://arxiv.org/abs/2507.22568v1
- Date: Wed, 30 Jul 2025 10:50:41 GMT
- Title: Subtyping Breast Lesions via Generative Augmentation based Long-tailed Recognition in Ultrasound
- Authors: Shijing Chen, Xinrui Zhou, Yuhao Wang, Yuhao Huang, Ao Chang, Dong Ni, Ruobing Huang,
- Abstract summary: We propose a framework for long-tailed classification that mitigates distributional bias through high-fidelity data synthesis.<n>Our method achieves promising performance compared to state-of-the-art approaches.
- Score: 8.410718166932798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate identification of breast lesion subtypes can facilitate personalized treatment and interventions. Ultrasound (US), as a safe and accessible imaging modality, is extensively employed in breast abnormality screening and diagnosis. However, the incidence of different subtypes exhibits a skewed long-tailed distribution, posing significant challenges for automated recognition. Generative augmentation provides a promising solution to rectify data distribution. Inspired by this, we propose a dual-phase framework for long-tailed classification that mitigates distributional bias through high-fidelity data synthesis while avoiding overuse that corrupts holistic performance. The framework incorporates a reinforcement learning-driven adaptive sampler, dynamically calibrating synthetic-real data ratios by training a strategic multi-agent to compensate for scarcities of real data while ensuring stable discriminative capability. Furthermore, our class-controllable synthetic network integrates a sketch-grounded perception branch that harnesses anatomical priors to maintain distinctive class features while enabling annotation-free inference. Extensive experiments on an in-house long-tailed and a public imbalanced breast US datasets demonstrate that our method achieves promising performance compared to state-of-the-art approaches. More synthetic images can be found at https://github.com/Stinalalala/Breast-LT-GenAug.
Related papers
- Federated Breast Cancer Detection Enhanced by Synthetic Ultrasound Image Augmentation [3.586778724545972]
Federated learning (FL) has emerged as a promising paradigm for collaboratively training deep learning models across institutions without exchanging sensitive medical data.<n>We propose a generative AI based data augmentation framework that integrates synthetic image sharing into the federated training process for breast cancer diagnosis via ultrasound images.
arXiv Detail & Related papers (2025-06-29T17:05:50Z) - Leveraging Diffusion Models for Synthetic Data Augmentation in Protein Subcellular Localization Classification [0.0]
We implement a class-conditional denoising diffusion probabilistic model (DDPM) to produce label-consistent samples.<n>We explore their integration with real data via two hybrid training strategies: Mix Loss and Mix Representation.<n>Our findings highlight the importance of realistic data generation and robust supervision when incorporating generative augmentation into biomedical image classification.
arXiv Detail & Related papers (2025-05-28T22:58:50Z) - HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation [2.964206587462833]
A novel semi-supervised segmentation framework, called HDC, is proposed incorporating adaptive consistency learning with a single-teacher architecture.<n>The framework introduces a hierarchical distillation mechanism with two objectives: Correlation Guidance Loss for aligning feature representations and Mutual Information Loss for stabilizing noisy student learning.
arXiv Detail & Related papers (2025-04-14T04:52:24Z) - GAUDA: Generative Adaptive Uncertainty-guided Diffusion-based Augmentation for Surgical Segmentation [1.0808810256442274]
We learn semantically comprehensive yet compact latent representations of the (image, mask) space.<n>We show that our approach can effectively synthesise unseen high-quality paired segmentation data of remarkable semantic coherence.
arXiv Detail & Related papers (2025-01-18T16:40:53Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral
Fracture Grading [72.45699658852304]
This paper proposes a novel approach to train a generative Diffusion Autoencoder model as an unsupervised feature extractor.
We model fracture grading as a continuous regression, which is more reflective of the smooth progression of fractures.
Importantly, the generative nature of our method allows us to visualize different grades of a given vertebra, providing interpretability and insight into the features that contribute to automated grading.
arXiv Detail & Related papers (2023-03-21T17:16:01Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
We introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours.
We construct a dual-pathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor.
The generated images yield significant quantitative improvement compared to existing methods.
arXiv Detail & Related papers (2021-04-22T11:18:17Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
We propose a new weakly-supervised lesions transfer framework, which can explore transferable domain-invariant knowledge across different datasets.
A Wasserstein quantified transferability framework is developed to highlight widerange transferable contextual dependencies.
A novel self-supervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easy-to-transfer target samples.
arXiv Detail & Related papers (2020-12-08T02:26:03Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.