論文の概要: Tool or Trouble? Exploring Student Attitudes Toward AI Coding Assistants
- arxiv url: http://arxiv.org/abs/2507.22900v1
- Date: Thu, 26 Jun 2025 05:59:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-03 20:19:02.919083
- Title: Tool or Trouble? Exploring Student Attitudes Toward AI Coding Assistants
- Title(参考訳): ツールかトラブルか?AIコーディングアシスタントへの学生の態度を探る
- Authors: Sergio Rojas-Galeano,
- Abstract要約: 学生はAIサポートにアクセスしてプログラミングタスクを完了し、第二に、AIなしでソリューションを拡張した。
発見は、AIツールが、特に初期開発において、コードを理解し、信頼性を高めるのに役立つと認識されたことを示唆している。
学生は、未知のタスクに知識を移すことが困難であることを報告し、概念的理解における過度な信頼とギャップを明らかにした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This exploratory study examines how AI code assistants shape novice programmers' experiences during a two-part exam in an introductory programming course. In the first part, students completed a programming task with access to AI support; in the second, they extended their solutions without AI. We collected Likert-scale and open-ended responses from 20 students to evaluate their perceptions and challenges. Findings suggest that AI tools were perceived as helpful for understanding code and increasing confidence, particularly during initial development. However, students reported difficulties transferring knowledge to unaided tasks, revealing possible overreliance and gaps in conceptual understanding. These insights highlight the need for pedagogical strategies that integrate AI meaningfully while reinforcing foundational programming skills.
- Abstract(参考訳): この探索的研究は、初等プログラミングコースにおける二部試験において、AIコードアシスタントが初心者プログラマの経験をいかに形作るかを調べる。
第1部では、学生がAIサポートにアクセス可能なプログラミングタスクを完了し、第2部では、AIなしでソリューションを拡張した。
学生20名を対象に,「いいね!」尺度と「オープンエンド」回答を収集し,その認識と課題について検討した。
発見は、AIツールが、特に初期開発において、コードを理解し、信頼性を高めるのに役立つと認識されたことを示唆している。
しかし, 学生は, 難解な課題に知識を移すことが困難であることを報告し, 概念的理解における過度な信頼感とギャップを明らかにした。
これらの洞察は、基礎プログラミングスキルを強化しながら、AIを有意義に統合する教育戦略の必要性を強調している。
関連論文リスト
- Evaluating AI-Powered Learning Assistants in Engineering Higher Education: Student Engagement, Ethical Challenges, and Policy Implications [0.2812395851874055]
本研究では、AIを活用した学習フレームワークである教育AIハブを、大規模なR1公立大学の学部・環境工学コースで活用することを評価する。
学生たちは、AIアシスタントの利便性と快適さを高く評価し、AIツールの使用の容易さを報告している。
多くの学生はAIの使用を倫理的に許容できると見なしたが、制度的な政策や潜在的な学術的不正に対する理解について不確実性を示した。
論文 参考訳(メタデータ) (2025-06-06T03:02:49Z) - Sakshm AI: Advancing AI-Assisted Coding Education for Engineering Students in India Through Socratic Tutoring and Comprehensive Feedback [1.9841192743072902]
プログラミング教育のための既存のAIツールは、ソクラティックガイダンスの欠如など、重要な課題に直面している。
本研究では,1170名の登録参加者を対象に,プラットフォームログ,エンゲージメント傾向,問題解決行動を分析し,Sakhm AIの効果を評価する。
論文 参考訳(メタデータ) (2025-03-16T12:13:29Z) - Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks [45.23431596135002]
本研究は,古典的対パートナー意識による説明が学習作業中の人間の行動とパフォーマンスに与える影響を比較検討した。
その結果, パートナー意識による説明は, 関係する人工エージェントの種類によって, 参加者に異なる影響を及ぼした。
論文 参考訳(メタデータ) (2024-11-15T13:22:04Z) - A Multi-Year Grey Literature Review on AI-assisted Test Automation [46.97326049485643]
テスト自動化(TA)技術は、ソフトウェアエンジニアリングの品質保証には不可欠だが、制限に直面している。
業界でAIが広く使われていることを考えると、真実の情報源はグレー文学だけでなく、専門家の心にも当てはまる。
この研究は、グレーの文献を調査し、AIがTAでどのように採用されているかを調査し、解決する問題、そのソリューション、利用可能なツールに焦点を当てる。
論文 参考訳(メタデータ) (2024-08-12T15:26:36Z) - Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [176.39275404745098]
我々は,2つのAIアシスタントであるGPT-3.5とGPT-4が適切な回答を得られるかどうかを評価する。
GPT-4は65.8%の質問を正解し、85.1%の質問に対して少なくとも1つの手順で正しい答えを出すことができる。
この結果から,AIの進歩を踏まえて,高等教育におけるプログラムレベルの評価設計の見直しが求められた。
論文 参考訳(メタデータ) (2024-08-07T12:11:49Z) - Effects of a Prompt Engineering Intervention on Undergraduate Students' AI Self-Efficacy, AI Knowledge and Prompt Engineering Ability: A Mixed Methods Study [36.48421439947282]
本研究は,香港の大学において,迅速な工学的介入を設計・実施した。
学生のAI自己効力、AI知識、そして効果的なプロンプト作成能力について検討した。
論文 参考訳(メタデータ) (2024-07-30T15:05:24Z) - The Widening Gap: The Benefits and Harms of Generative AI for Novice Programmers [1.995977018536036]
初心者プログラマはメタ認知的認識と戦略の欠如により、しばしば問題解決に苦しむ。
多くの初心者がジェネレーティブAI(GenAI)を使ってプログラミングしている
その結果, 加速した学生と苦労した学生の間には, GenAIツールの使用が不運な部分があることが判明した。
論文 参考訳(メタデータ) (2024-05-28T01:48:28Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - Developer Experiences with a Contextualized AI Coding Assistant:
Usability, Expectations, and Outcomes [11.520721038793285]
この研究は、コンテキスト化されたコーディングAIアシスタントであるStackSpot AIを制御された環境で使用した62人の参加者の初期体験に焦点を当てる。
アシスタントの使用は、大幅な時間を節約し、ドキュメントへのアクセスを容易にし、内部APIの正確なコードを生成する結果となった。
コーディングアシスタントが、複雑なコードを扱う際の変数応答や制限と同様に、よりコンテキスト情報にアクセスできるようにするために必要な知識ソースに関連する課題が観察された。
論文 参考訳(メタデータ) (2023-11-30T10:52:28Z) - Students' Perspective on AI Code Completion: Benefits and Challenges [2.936007114555107]
学生の視点から,AIコード補完のメリット,課題,期待について検討した。
その結果,AIコード補完は,正しい構文提案を提供することで,学生の生産性と効率を向上させることがわかった。
将来的には、AIコード補完は説明可能であり、教育プロセスを強化するための最高のコーディングプラクティスを提供するべきである。
論文 参考訳(メタデータ) (2023-10-31T22:41:16Z) - Learning to Prompt in the Classroom to Understand AI Limits: A pilot
study [35.06607166918901]
大規模言語モデル(LLM)と、ChatGPTのような派生したチャットボットは、AIシステムの自然言語処理能力を大幅に改善した。
しかし、AI手法が顕著な貢献を示しているにもかかわらず、興奮は否定的な感情を引き起こしている。
パイロット教育は21人の生徒を抱えた高校で実施された。
論文 参考訳(メタデータ) (2023-07-04T07:51:37Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - HALMA: Humanlike Abstraction Learning Meets Affordance in Rapid Problem
Solving [104.79156980475686]
人間は自然主義的タスクの構造に応じて構成的および因果的抽象化、つまり知識を学ぶ。
エージェントがその知識をどのように表現するかには、知覚、概念、アルゴリズムの3段階の一般化がある、と我々は主張する。
このベンチマークは、ビジュアルコンセプト開発と迅速な問題解決のための新しいタスクドメイン、HALMAを中心にしています。
論文 参考訳(メタデータ) (2021-02-22T20:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。