論文の概要: Effects of a Prompt Engineering Intervention on Undergraduate Students' AI Self-Efficacy, AI Knowledge and Prompt Engineering Ability: A Mixed Methods Study
- arxiv url: http://arxiv.org/abs/2408.07302v1
- Date: Tue, 30 Jul 2024 15:05:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 03:35:49.368918
- Title: Effects of a Prompt Engineering Intervention on Undergraduate Students' AI Self-Efficacy, AI Knowledge and Prompt Engineering Ability: A Mixed Methods Study
- Title(参考訳): プロンプト・エンジニアリング・インターベンションが大学生のAI自己効力,AI知識,およびプロンプト・エンジニアリング能力に及ぼす影響:混合手法による研究
- Authors: David James Woo, Deliang Wang, Tim Yung, Kai Guo,
- Abstract要約: 本研究は,香港の大学において,迅速な工学的介入を設計・実施した。
学生のAI自己効力、AI知識、そして効果的なプロンプト作成能力について検討した。
- 参考スコア(独自算出の注目度): 36.48421439947282
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Prompt engineering is critical for effective interaction with large language models (LLMs) such as ChatGPT. However, efforts to teach this skill to students have been limited. This study designed and implemented a prompt engineering intervention, examining its influence on undergraduate students' AI self-efficacy, AI knowledge, and proficiency in creating effective prompts. The intervention involved 27 students who participated in a 100-minute workshop conducted during their history course at a university in Hong Kong. During the workshop, students were introduced to prompt engineering strategies, which they applied to plan the course's final essay task. Multiple data sources were collected, including students' responses to pre- and post-workshop questionnaires, pre- and post-workshop prompt libraries, and written reflections. The study's findings revealed that students demonstrated a higher level of AI self-efficacy, an enhanced understanding of AI concepts, and improved prompt engineering skills because of the intervention. These findings have implications for AI literacy education, as they highlight the importance of prompt engineering training for specific higher education use cases. This is a significant shift from students haphazardly and intuitively learning to engineer prompts. Through prompt engineering education, educators can faciitate students' effective navigation and leverage of LLMs to support their coursework.
- Abstract(参考訳): プロンプトエンジニアリングはChatGPTのような大規模言語モデル(LLM)との効果的な相互作用において重要である。
しかし、この技術を学生に教える努力は限られている。
本研究は、学生のAI自己効力、AI知識、効果的なプロンプト作成能力に対する影響を考察し、迅速な工学的介入を設計、実施した。
この介入には、香港の大学の歴史講習会で100分間のワークショップに参加した27人の学生が参加した。
ワークショップの間、学生はエンジニアリング戦略の推進のために紹介され、コースの最終エッセイタスクの計画に応募した。
複数のデータソースが収集され, 学生の作業前・作業後アンケートに対する回答, 作業前・作業後プロンプトライブラリ, リフレクションが得られた。
研究の結果、学生はより高いレベルのAI自己効力、AI概念の理解の強化、介入による迅速なエンジニアリングスキルの向上が示された。
これらの知見は、AIリテラシー教育に影響を及ぼし、特定の高等教育のユースケースにおいて、迅速なエンジニアリングトレーニングの重要性を強調している。
これは、見苦しい、直感的に学ぶ学生から、エンジニアのプロンプトへの大きなシフトである。
工学教育を迅速に進めることで、教育者は学生の効果的なナビゲーションを円滑にし、LLMを活用してコースを支援することができる。
関連論文リスト
- Exploring Knowledge Tracing in Tutor-Student Dialogues [53.52699766206808]
本稿では,教師と学生の対話における知識追跡(KT)の最初の試みについて述べる。
そこで本研究では,対話の各ターンに係わる知識コンポーネントやスキルを同定する手法を提案する。
次に,得られたラベル付きデータに様々なKT手法を適用し,対話全体を通して学生の知識レベルを追跡する。
論文 参考訳(メタデータ) (2024-09-24T22:31:39Z) - BoilerTAI: A Platform for Enhancing Instruction Using Generative AI in Educational Forums [0.0]
本稿では,Generative AI(GenAI)とオンライン教育フォーラムをシームレスに統合する,実用的でスケーラブルなプラットフォームについて述べる。
このプラットフォームは、学生ポストとLarge Language Model(LLM)との対話を円滑に進めることによって、指導スタッフが反応を効率的に管理し、洗練し、承認することを可能にする。
論文 参考訳(メタデータ) (2024-09-20T04:00:30Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
本稿では,学生の記録から学生の知識をトラッキングし,自然言語による説明を提供する認知誘導フレームワークを提案する。
3つの広く使われているデータセットによる実験結果から、LLMは競合する深層知識追跡手法に匹敵する、あるいは優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-23T10:07:21Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
プロンプティングは、特定の自然言語処理タスクに大規模言語モデル(LLM)を適用するための主流パラダイムとなっている。
このアプローチは、LLMの振る舞いをガイドし、制御するために、モデル推論と人間の努力のさらなる計算負担をもたらす。
本稿では, 今後の研究の方向性を明らかにするため, 促進, 効率的な促進のための進歩を概説する。
論文 参考訳(メタデータ) (2024-04-01T12:19:08Z) - I would love this to be like an assistant, not the teacher: a voice of the customer perspective of what distance learning students want from an Artificial Intelligence Digital Assistant [0.0]
本研究では,仮想AIデジタルアシスタント(AIDA)の設計に関する10人のオンライン・遠隔学習学生の認識について検討した。
参加者全員が、リアルタイムのアシストとクエリの解決、学術的なタスクのサポート、パーソナライゼーションとアクセシビリティのサポート、そして感情的および社会的サポートにAIツールを使用することのメリットを研究し、報告しながら、そのようなAIツールの有用性について同意した。
学生の懸念は、AIDA、データプライバシとデータ利用、運用上の課題、学術的完全性と誤用、教育の将来に関する倫理的・社会的意味に関するものである。
論文 参考訳(メタデータ) (2024-02-16T08:10:41Z) - How Far Are We? The Triumphs and Trials of Generative AI in Learning
Software Engineering [16.5141990552784]
本研究は,ソフトウェア工学の学生を支援するコンボゲンAIプラットフォームChatGPTの有効性を評価する。
従来の資源と比較して,ChatGPTを用いた場合,参加者の生産性や自己効力度には統計的に差は認められなかった。
また,Human-AIインタラクションガイドライン違反による5つの障害が明らかとなり,参加者に対して7つの異なる(負の)結果が得られた。
論文 参考訳(メタデータ) (2023-12-18T21:38:00Z) - Understanding Teacher Perspectives and Experiences after Deployment of
AI Literacy Curriculum in Middle-school Classrooms [12.35885897302579]
我々は,MIT RAICAカリキュラムのモジュール実装にともなう7人の教師の経験を考察した。
我々の分析は、AIモジュールが、この分野における教師の知識を拡大したことを示唆している。
私たちの教師は、技術資源をナビゲートする際に、より良い外部支援の必要性を主張しました。
論文 参考訳(メタデータ) (2023-12-08T05:36:16Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
我々はマルチモーダルなプロンプトを理解するためにロボットを訓練する問題に取り組む。
このようなタスクは、視覚と言語信号の相互接続と相補性を理解するロボットの能力にとって大きな課題となる。
マルチモーダルプロンプトを用いてロボット操作を行うためのポリシーを学習する効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-14T22:24:58Z) - TecCoBot: Technology-aided support for self-regulated learning [52.77024349608834]
自己学習活動は、学習成果の達成への活動の程度と自己学習活動の貢献を高めることができる。
特に世界的なパンデミックの時代には、学生が既に技術強化された材料、プロセス、デジタルプラットフォームを使っている家庭で、自己学習活動がますます活発に行われている。
論文 参考訳(メタデータ) (2021-11-23T13:50:21Z) - Teaching Tech to Talk: K-12 Conversational Artificial Intelligence
Literacy Curriculum and Development Tools [9.797319790710711]
我々は,MIT App Inventorの会話エージェントインタフェースとワークショップのカリキュラムをAI能力に関して評価した。
私たちは、学生がAI倫理と学習の概念に最も苦労していることを発見し、教えるときにこれらのトピックを強調することを推奨した。
論文 参考訳(メタデータ) (2020-09-11T20:52:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。