論文の概要: Predicting stock prices with ChatGPT-annotated Reddit sentiment
- arxiv url: http://arxiv.org/abs/2507.22922v1
- Date: Mon, 21 Jul 2025 14:56:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-03 20:19:02.944027
- Title: Predicting stock prices with ChatGPT-annotated Reddit sentiment
- Title(参考訳): ChatGPTに注釈を付けたRedditの感情で株価を予測
- Authors: Mateusz Kmak, Kamil Chmurzyński, Kamil Matejuk, Paweł Kotzbach, Jan Kocoń,
- Abstract要約: 本稿では,ソーシャルメディアの議論から得られた感情が,株式市場の動きを有意義に予測できるかどうかを考察する。
我々はRedditのr/wallwallbetsに注目し、GameStop(GME)とAMC Entertainment(AMC)という2つの企業に関する感情を分析します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The surge of retail investor activity on social media, exemplified by the 2021 GameStop short squeeze, raised questions about the influence of online sentiment on stock prices. This paper explores whether sentiment derived from social media discussions can meaningfully predict stock market movements. We focus on Reddit's r/wallstreetbets and analyze sentiment related to two companies: GameStop (GME) and AMC Entertainment (AMC). To assess sentiment's role, we employ two existing text-based sentiment analysis methods and introduce a third, a ChatGPT-annotated and fine-tuned RoBERTa-based model designed to better interpret the informal language and emojis prevalent in social media discussions. We use correlation and causality metrics to determine these models' predictive power. Surprisingly, our findings suggest that social media sentiment has only a weak correlation with stock prices. At the same time, simpler metrics, such as the volume of comments and Google search trends, exhibit stronger predictive signals. These results highlight the complexity of retail investor behavior and suggest that traditional sentiment analysis may not fully capture the nuances of market-moving online discussions.
- Abstract(参考訳): 2021年のGameStop(ゲームストップ)ショートストリップで実証されたソーシャルメディアへのリテール投資家の活動の急増は、オンラインの感情が株価に与える影響に関する疑問を提起した。
本稿では,ソーシャルメディアの議論から得られた感情が,株式市場の動きを有意義に予測できるかどうかを考察する。
我々はRedditのr/wallwallbetsに注目し、GameStop(GME)とAMC Entertainment(AMC)という2つの企業に関する感情を分析します。
そこで我々は,2つの既存のテキストベースの感情分析手法を採用し,ソーシャルメディアの議論でよく見られる非公式な言語と絵文字をよりよく解釈するように設計された,ChatGPTアノテーションと微調整RoBERTaベースのモデルを導入する。
これらのモデルの予測能力を決定するために、相関と因果関係のメトリクスを使用します。
驚くべきことに、私たちの調査結果は、ソーシャルメディアの感情が株価と弱い相関しか持たないことを示唆している。
同時に、コメントの量やGoogle検索トレンドなどの単純なメトリクスは、より強力な予測シグナルを示す。
これらの結果は、小売投資家の行動の複雑さを浮き彫りにし、従来の感情分析が市場の動きのオンライン議論のニュアンスを完全に捉えていないことを示唆している。
関連論文リスト
- Emoji Driven Crypto Assets Market Reactions [0.21847754147782888]
我々は、マルチモーダル感情分析に、GPT-4と微調整変換器に基づくBERTモデルを利用する。
これらの洞察は、BTC PriceやVCRIXインデックスといった重要な市場指標と相関する。
以上の結果から,絵文字の感情に基づく戦略が,市場不振の回避に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-02-16T07:05:49Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Taureau: A Stock Market Movement Inference Framework Based on Twitter
Sentiment Analysis [0.0]
我々はTwitterの感情分析を利用して株式市場の動きを予測するフレームワークTaureauを提案する。
まずはTweepyとgetOldTweetsを使って、一連のトップ企業の世論を示す歴史的なツイートを入手する。
得られた感情スコアの時間次元を月次株価変動データと相関する。
論文 参考訳(メタデータ) (2023-03-30T19:12:08Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - The Battle of Information Representations: Comparing Sentiment and
Semantic Features for Forecasting Market Trends [0.5249805590164902]
市場の動向を予測するための感情属性よりも文脈埋め込みの形での意味的特徴が重要であるかを検討する。
当社は、NASDAQの資本化による大手企業に関連するTwitter投稿のコーパスとその価格設定について検討する。
以上の結果から,感情的特徴の活用により,有意な頻度で測定値が上昇することが示唆された。
論文 参考訳(メタデータ) (2023-03-24T18:30:15Z) - Evaluating Impact of Social Media Posts by Executives on Stock Prices [0.5429166905724048]
TwitterやRedditのようなソーシャルメディアは、このような影響力のホットスポットになっている。
本稿は,Twitter と Reddit の投稿を用いた株価予測におけるソーシャルメディア投稿の影響について検討する。
論文 参考訳(メタデータ) (2022-11-01T03:45:17Z) - A Word is Worth A Thousand Dollars: Adversarial Attack on Tweets Fools
Stock Prediction [100.9772316028191]
本稿では,3つのストック予測犠牲者モデルを騙すために,様々な攻撃構成を試行する。
以上の結果から,提案手法が一貫した成功率を達成し,取引シミュレーションにおいて大きな損失をもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-01T05:12:22Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - LSTM Based Sentiment Analysis for Cryptocurrency Prediction [11.811501670389935]
この研究は、ソーシャルメディアの感情を分析することによって、暗号通貨の揮発性価格の動きを予測することを目的としています。
本稿では,中国のソーシャルメディアプラットフォームSina-Weiboにおける,中国のソーシャルメディア投稿の感情を識別する手法を提案する。
Weiboポストをキャプチャし、暗号固有の感情辞書の作成を記述したパイプラインを開発し、Long Short-term memory(LSTM)ベースのリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T04:08:37Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。