論文の概要: Optimised Feature Subset Selection via Simulated Annealing
- arxiv url: http://arxiv.org/abs/2507.23568v1
- Date: Thu, 31 Jul 2025 13:57:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:09.905743
- Title: Optimised Feature Subset Selection via Simulated Annealing
- Title(参考訳): 模擬アニーリングによる最適特徴量選択
- Authors: Fernando Martínez-García, Álvaro Rubio-García, Samuel Fernández-Lorenzo, Juan José García-Ripoll, Diego Porras,
- Abstract要約: 本稿では,$ell_0$-norm特徴選択のための新しいアルゴリズムであるSA-FDRを紹介する。
SA-FDRは、高い予測精度を達成しつつ、よりコンパクトな特徴部分集合を一貫して選択することを示す。
その結果、SA-FDRは高次元設定で解釈可能なモデルを設計するための柔軟で効果的なソリューションを提供する。
- 参考スコア(独自算出の注目度): 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SA-FDR, a novel algorithm for $\ell_0$-norm feature selection that considers this task as a combinatorial optimisation problem and solves it by using simulated annealing to perform a global search over the space of feature subsets. The optimisation is guided by the Fisher discriminant ratio, which we use as a computationally efficient proxy for model quality in classification tasks. Our experiments, conducted on datasets with up to hundreds of thousands of samples and hundreds of features, demonstrate that SA-FDR consistently selects more compact feature subsets while achieving a high predictive accuracy. This ability to recover informative yet minimal sets of features stems from its capacity to capture inter-feature dependencies often missed by greedy optimisation approaches. As a result, SA-FDR provides a flexible and effective solution for designing interpretable models in high-dimensional settings, particularly when model sparsity, interpretability, and performance are crucial.
- Abstract(参考訳): 我々は,このタスクを組合せ最適化問題とみなす,$\ell_0$-norm機能選択のための新しいアルゴリズムであるSA-FDRを紹介する。
この最適化は、分類タスクにおけるモデル品質の計算効率の良いプロキシとして用いられるフィッシャー判別比によって導かれる。
数十万のサンプルと数百の特徴を持つデータセットを用いて行った実験は、SA-FDRが常によりコンパクトな特徴サブセットを選択しつつ、高い予測精度を実現していることを示す。
情報的かつ最小限の機能セットを回復する能力は、機能間の依存関係をキャプチャする能力に起因している。
結果として、SA-FDRは高次元設定で解釈可能なモデルを設計するためのフレキシブルで効果的なソリューションを提供する。
関連論文リスト
- "FRAME: Forward Recursive Adaptive Model Extraction-A Technique for Advance Feature Selection" [0.0]
本研究では,新しいハイブリッド手法であるフォワード再帰適応モデル抽出手法(FRAME)を提案する。
FRAMEは、フォワード選択と再帰的特徴除去を組み合わせて、さまざまなデータセットにおける機能選択を強化する。
その結果、FRAMEは下流の機械学習評価指標に基づいて、常に優れた予測性能を提供することが示された。
論文 参考訳(メタデータ) (2025-01-21T08:34:10Z) - A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
一般的な類似性に基づく機能アップサンプリングパイプラインが提案されている。
本稿では,セマンティック・アウェアとディテール・アウェアの両方の観点から,明示的に制御可能なクエリキー機能アライメントを提案する。
我々は,モーザイクアーティファクトを緩和する上ではシンプルだが有効であるHR特徴に対して,きめ細かな近傍選択戦略を開発する。
論文 参考訳(メタデータ) (2024-07-02T14:12:21Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
本研究では, 逐次再構成, 変分, 性能評価器の損失を伴って, 深部変分変圧器モデルを構築した。
提案モデルでは,特徴選択の知識を抽出し,連続的な埋め込み空間を学習し,特徴選択決定シーケンスをユーティリティスコアに関連付けられた埋め込みベクトルにマッピングする。
論文 参考訳(メタデータ) (2024-03-06T16:31:56Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
本稿では,Long Short-Term Memory Networkに埋め込まれた特徴選択手法を提案する。
本手法はLSTMの重みと偏りを分割的に最適化する。
イタリアとスペイン南東部の大気質時系列データの実験的評価により,従来のLSTMの能力一般化が著しく向上することが確認された。
論文 参考訳(メタデータ) (2023-12-29T08:42:10Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
本稿では,スパース関数オン・ファンクション回帰問題において特徴選択を行うための,新しい,柔軟な,超効率的なアプローチを提案する。
我々はそれをスカラー・オン・ファンクション・フレームワークに拡張する方法を示す。
AOMIC PIOP1による脳MRIデータへの応用について述べる。
論文 参考訳(メタデータ) (2023-03-26T19:41:17Z) - Fine-grained Retrieval Prompt Tuning [149.9071858259279]
微粒な検索プロンプトチューニングは, サンプルプロンプトと特徴適応の観点から, きめの細かい検索タスクを実行するために, 凍結した事前学習モデルを操る。
学習可能なパラメータが少ないFRPTは、広く使われている3つの細粒度データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-07-29T04:10:04Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
モデル選択の重要性を強調するために、機械学習アルゴリズムを自動化するための一連の作業が行われた。
理想主義的な方法で解析的トラクタビリティと計算可能性を解決する必要性は、効率と適用性を確保することを可能にしている。
論文 参考訳(メタデータ) (2021-08-27T19:03:32Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
組込み特徴選択(ODEFS)を用いた外乱検出アンサンブルフレームワークを提案する。
各ランダムなサブサンプリングベースの学習コンポーネントに対して、ODEFSは、特徴選択と外れ値検出をペアのランキング式に統一する。
我々は、特徴選択と例選択を同時に最適化するために閾値付き自己評価学習を採用する。
論文 参考訳(メタデータ) (2020-01-15T13:14:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。