Beyond Agreement: Rethinking Ground Truth in Educational AI Annotation
- URL: http://arxiv.org/abs/2508.00143v1
- Date: Thu, 31 Jul 2025 20:05:26 GMT
- Title: Beyond Agreement: Rethinking Ground Truth in Educational AI Annotation
- Authors: Danielle R. Thomas, Conrad Borchers, Kenneth R. Koedinger,
- Abstract summary: We argue that overreliance on human inter-rater reliability (IRR) as a gatekeeper for annotation quality hampers progress in classifying data.<n>We highlight five examples of complementary evaluation methods, such as multi-label annotation schemes, expert-based approaches, and close-the-loop validity.<n>We call on the field to rethink annotation quality and ground truth--prioritizing validity and educational impact over consensus alone.
- Score: 1.8434042562191815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans can be notoriously imperfect evaluators. They are often biased, unreliable, and unfit to define "ground truth." Yet, given the surging need to produce large amounts of training data in educational applications using AI, traditional inter-rater reliability (IRR) metrics like Cohen's kappa remain central to validating labeled data. IRR remains a cornerstone of many machine learning pipelines for educational data. Take, for example, the classification of tutors' moves in dialogues or labeling open responses in machine-graded assessments. This position paper argues that overreliance on human IRR as a gatekeeper for annotation quality hampers progress in classifying data in ways that are valid and predictive in relation to improving learning. To address this issue, we highlight five examples of complementary evaluation methods, such as multi-label annotation schemes, expert-based approaches, and close-the-loop validity. We argue that these approaches are in a better position to produce training data and subsequent models that produce improved student learning and more actionable insights than IRR approaches alone. We also emphasize the importance of external validity, for example, by establishing a procedure of validating tutor moves and demonstrating that it works across many categories of tutor actions (e.g., providing hints). We call on the field to rethink annotation quality and ground truth--prioritizing validity and educational impact over consensus alone.
Related papers
- Rectifying Privacy and Efficacy Measurements in Machine Unlearning: A New Inference Attack Perspective [42.003102851493885]
We propose RULI (Rectified Unlearning Evaluation Framework via Likelihood Inference) to address critical gaps in the evaluation of inexact unlearning methods.<n>RULI introduces a dual-objective attack to measure both unlearning efficacy and privacy risks at a per-sample granularity.<n>Our findings reveal significant vulnerabilities in state-of-the-art unlearning methods, exposing privacy risks underestimated by existing methods.
arXiv Detail & Related papers (2025-06-16T00:30:02Z) - Active Learning Methods for Efficient Data Utilization and Model Performance Enhancement [5.4044723481768235]
This paper gives a detailed overview of Active Learning (AL), which is a strategy in machine learning that helps models achieve better performance using fewer labeled examples.<n>It introduces the basic concepts of AL and discusses how it is used in various fields such as computer vision, natural language processing, transfer learning, and real-world applications.
arXiv Detail & Related papers (2025-04-21T20:42:13Z) - Deep Fair Learning: A Unified Framework for Fine-tuning Representations with Sufficient Networks [8.616743904155419]
We propose a framework that integrates sufficient dimension reduction with deep learning to construct fair and informative representations.<n>By introducing a novel penalty term during fine-tuning, our method enforces conditional independence between sensitive attributes and learned representations.<n>Our approach achieves a superior balance between fairness and utility, significantly outperforming state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-08T22:24:22Z) - Are We Truly Forgetting? A Critical Re-examination of Machine Unlearning Evaluation Protocols [14.961054239793356]
We introduce a rigorous unlearning evaluation setup, in which forgetting classes exhibit semantic similarity to downstream task classes.<n>We hope our benchmark serves as a standardized protocol for evaluating unlearning algorithms under realistic conditions.
arXiv Detail & Related papers (2025-03-10T07:11:34Z) - Probably Approximately Precision and Recall Learning [62.912015491907994]
Precision and Recall are foundational metrics in machine learning.
One-sided feedback--where only positive examples are observed during training--is inherent in many practical problems.
We introduce a PAC learning framework where each hypothesis is represented by a graph, with edges indicating positive interactions.
arXiv Detail & Related papers (2024-11-20T04:21:07Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Approximate Unlearning Completeness [30.596695293390415]
We introduce the task of Lifecycle Unlearning Commitment Management (LUCM) for approximate unlearning.
We propose an efficient metric designed to assess the sample-level unlearning completeness.
We show that this metric is able to serve as a tool for monitoring unlearning anomalies throughout the unlearning lifecycle.
arXiv Detail & Related papers (2024-03-19T15:37:27Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
We propose D-BAT (Diversity-By-disAgreement Training), which enforces agreement among the models on the training data.
We show how D-BAT naturally emerges from the notion of generalized discrepancy.
arXiv Detail & Related papers (2022-02-09T12:03:02Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Assessment Modeling: Fundamental Pre-training Tasks for Interactive
Educational Systems [3.269851859258154]
A common way of circumventing label-scarce problems is pre-training a model to learn representations of the contents of learning items.
We propose Assessment Modeling, a class of fundamental pre-training tasks for general interactive educational systems.
arXiv Detail & Related papers (2020-01-01T02:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.