論文の概要: Robust 3D Object Detection using Probabilistic Point Clouds from Single-Photon LiDARs
- arxiv url: http://arxiv.org/abs/2508.00169v1
- Date: Thu, 31 Jul 2025 21:32:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.672531
- Title: Robust 3D Object Detection using Probabilistic Point Clouds from Single-Photon LiDARs
- Title(参考訳): 単一光子LiDARからの確率点雲を用いたロバスト3次元物体検出
- Authors: Bhavya Goyal, Felipe Gutierrez-Barragan, Wei Lin, Andreas Velten, Yin Li, Mohit Gupta,
- Abstract要約: LiDARベースの3Dセンサーは、様々なシーン理解タスクで使用される標準的な3D表現である点雲を提供する。
現代のLiDARは、長距離や低アルベドオブジェクトのようないくつかの現実のシナリオで課題に直面し、スパースや誤点雲を発生させる。
本稿では,各点を確率属性で拡張した新しい3次元シーン表現である確率点雲(PPC)を提案する。
- 参考スコア(独自算出の注目度): 29.92823252627008
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: LiDAR-based 3D sensors provide point clouds, a canonical 3D representation used in various scene understanding tasks. Modern LiDARs face key challenges in several real-world scenarios, such as long-distance or low-albedo objects, producing sparse or erroneous point clouds. These errors, which are rooted in the noisy raw LiDAR measurements, get propagated to downstream perception models, resulting in potentially severe loss of accuracy. This is because conventional 3D processing pipelines do not retain any uncertainty information from the raw measurements when constructing point clouds. We propose Probabilistic Point Clouds (PPC), a novel 3D scene representation where each point is augmented with a probability attribute that encapsulates the measurement uncertainty (or confidence) in the raw data. We further introduce inference approaches that leverage PPC for robust 3D object detection; these methods are versatile and can be used as computationally lightweight drop-in modules in 3D inference pipelines. We demonstrate, via both simulations and real captures, that PPC-based 3D inference methods outperform several baselines using LiDAR as well as camera-LiDAR fusion models, across challenging indoor and outdoor scenarios involving small, distant, and low-albedo objects, as well as strong ambient light. Our project webpage is at https://bhavyagoyal.github.io/ppc .
- Abstract(参考訳): LiDARベースの3Dセンサーは、様々なシーン理解タスクで使用される標準的な3D表現である点雲を提供する。
現代のLiDARは、長距離や低アルベドオブジェクトなど、いくつかの現実のシナリオにおいて重要な課題に直面している。
ノイズの多いLiDAR測定に根ざしたこれらの誤差は、下流の知覚モデルに伝播し、精度が著しく低下する可能性がある。
これは、従来の3D処理パイプラインが、点雲を構築する際に、生計測から不確実な情報を保持していないためである。
本稿では,PPC(Probabilistic Point Clouds)を提案する。PPC(Probabilistic Point Clouds)とは,生データ中の測定の不確実性(あるいは信頼性)をカプセル化した確率属性を各点に付加した3次元シーン表現である。
さらに3次元オブジェクト検出にPPCを活用する推論手法を導入し、これらの手法は汎用的で、3次元推論パイプラインにおいて計算的に軽量なドロップインモジュールとして使用することができる。
シミュレーションと実撮影の両方を通して、PPCベースの3D推論手法は、LiDARとカメラ-LiDAR融合モデルを用いて複数のベースラインを上回り、小型、遠隔、低アルベドの物体と強力な環境光を含む屋内および屋外のシナリオに挑戦する。
プロジェクトのWebページはhttps://bhavyagoyal.github.io/ppc です。
関連論文リスト
- VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
モノクル3Dオブジェクト検出は、自律運転やロボティクスなど、さまざまなアプリケーションにおいて重要な役割を担っている。
本稿では,VFMM3Dを提案する。VFMM3Dは,ビジョンファウンデーションモデル(VFM)の機能を利用して,単一ビュー画像を正確にLiDARポイントクラウド表現に変換する,革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-04-15T03:12:12Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
単分子と点雲に基づく3次元検出の利点を組み合わせたバランスの取れたアプローチを提案する。
本手法では,低コストで低解像度のセンサから得られる3Dポイントを少数必要としている。
3次元検出の精度は最先端の単分子検出法と比較して20%向上する。
論文 参考訳(メタデータ) (2024-04-10T03:54:53Z) - Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object
Detection [0.7234862895932991]
近年の進歩は擬似LiDAR、すなわち合成高密度点雲を導入し、カメラなどの追加のモダリティを使って3Dオブジェクト検出を強化している。
我々は,LiDARセンサとシーンセマンティクスに頼って,密度の高い擬似点雲で生スキャンを増強する,新しいLiDAR専用フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-16T09:18:47Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
安全クリティカルな環境では、アウト・オブ・ディストリビューションとロングテールサンプルの堅牢性は、危険な問題を回避するのに不可欠である。
トレーニング中の変形点雲を考慮した3次元物体検出器の領域外データへの一般化を著しく改善する。
我々は、リアルに損傷を受けた稀な車の合成データセットであるCrashDを提案し、共有する。
論文 参考訳(メタデータ) (2021-12-09T08:50:54Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
我々は、点雲をアンカーフリーで検出する新しい1段3次元検出器を開発した。
ボクセルをベースとしたスパース3D特徴量からスパース2D特徴量マップに変換することでこれを克服する。
検出信頼度スコアとバウンディングボックス回帰の精度との相関性を改善するために,IoUに基づく検出信頼度再校正手法を提案する。
論文 参考訳(メタデータ) (2021-08-08T13:42:13Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
既存の手法では、2つのステップでこの問題に対処する: 第一深度推定を行い、その深さ推定から擬似LiDAR点雲表現を計算し、3次元空間で物体検出を行う。
この2つのタスクを同一のメトリック空間で統一するモデルを提案する。
提案手法は,既存の手法と比較して推定時間を大幅に削減し,挑戦的なKITTIベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-17T05:11:38Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
本稿では,3次元関心領域(RoI)の集合を点雲から対応する画像の2次元ロIに投影することで,新しい融合アルゴリズムを提案する。
提案手法は,KITTI 3Dオブジェクト検出課題ベンチマークにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2020-09-09T20:23:27Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
擬似LiDAR(PL)は、LiDARセンサに基づく手法と安価なステレオカメラに基づく手法の精度ギャップを劇的に減らした。
PLは最先端のディープニューラルネットワークと2D深度マップ出力を3Dポイントクラウド入力に変換することで3Dオブジェクト検出のための3D深度推定を組み合わせている。
我々は、PLパイプライン全体をエンドツーエンドにトレーニングできるように、差別化可能なRepresentation (CoR)モジュールに基づく新しいフレームワークを導入します。
論文 参考訳(メタデータ) (2020-04-07T02:18:38Z) - Boundary-Aware Dense Feature Indicator for Single-Stage 3D Object
Detection from Point Clouds [32.916690488130506]
本稿では,3次元検出器が境界を意識して点雲の最も密集した領域に焦点を合わせるのを支援する普遍モジュールを提案する。
KITTIデータセットの実験により、DENFIはベースライン単段検出器の性能を著しく改善することが示された。
論文 参考訳(メタデータ) (2020-04-01T01:21:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。