Towards Higher Effective Rank in Parameter-efficient Fine-tuning using Khatri--Rao Product
- URL: http://arxiv.org/abs/2508.00230v1
- Date: Fri, 01 Aug 2025 00:29:13 GMT
- Title: Towards Higher Effective Rank in Parameter-efficient Fine-tuning using Khatri--Rao Product
- Authors: Paul Albert, Frederic Z. Zhang, Hemanth Saratchandran, Anton van den Hengel, Ehsan Abbasnejad,
- Abstract summary: We present a comparison amongst full-rank and low-rank PEFT methods.<n> KRAdapter is a novel PEFT algorithm that produces matrix product with a high effective rank.<n>We demonstrate performance gains with KRAdapter on vision-language models up to 1B parameters and on large language models up to 8B parameters.
- Score: 44.54075854327492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-efficient fine-tuning (PEFT) has become a standard approach for adapting large pre-trained models. Amongst PEFT methods, low-rank adaptation (LoRA) has achieved notable success. However, recent studies have highlighted its limitations compared against full-rank alternatives, particularly when applied to multimodal and large language models. In this work, we present a quantitative comparison amongst full-rank and low-rank PEFT methods using a synthetic matrix approximation benchmark with controlled spectral properties. Our results confirm that LoRA struggles to approximate matrices with relatively flat spectrums or high frequency components -- signs of high effective ranks. To this end, we introduce KRAdapter, a novel PEFT algorithm that leverages the Khatri-Rao product to produce weight updates, which, by construction, tends to produce matrix product with a high effective rank. We demonstrate performance gains with KRAdapter on vision-language models up to 1B parameters and on large language models up to 8B parameters, particularly on unseen common-sense reasoning tasks. In addition, KRAdapter maintains the memory and compute efficiency of LoRA, making it a practical and robust alternative to fine-tune billion-scale parameter models.
Related papers
- DenseLoRA: Dense Low-Rank Adaptation of Large Language Models [14.133511131962786]
Low-rank adaptation (LoRA) has been developed as an efficient approach for adapting large language models (LLMs)<n>We introduce Dense Low-Rank Adaptation (DenseLoRA), a novel approach that enhances parameter efficiency while achieving superior performance compared to LoRA.<n>We evaluate DenseLoRA on various benchmarks, showing that it achieves 83.8% accuracy with only 0.01% of trainable parameters, compared to LoRA's 80.8% accuracy with 0.70% of trainable parameters on LLaMA3-8B.
arXiv Detail & Related papers (2025-05-27T08:19:07Z) - EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition [2.5269004336032186]
Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA) is a novel PEFT method that decomposes pre-trained weights into magnitude and directional components.<n>EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA.
arXiv Detail & Related papers (2025-01-21T11:42:09Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.<n>We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.<n>Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for LLMs [51.02233412547456]
We introduce a novel PEFT method, called Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW)
Our method updates only salient columns, while injecting Gaussian noise into non-salient ones.
Experiments with LLaMA models demonstrate that GIFT-SW outperforms full fine-tuning and modern PEFT methods under the same computational budget.
arXiv Detail & Related papers (2024-08-27T14:41:14Z) - Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning [38.80020737321214]
We propose a framework for efficient parameter fine-tuning (PEFT) based on structured unrestricted-rank matrices (SURM)<n>SURMs achieve 5-7% accuracy gains on various image classification tasks while replacing low-rank matrices in LoRA.<n>It also results in up to 12x reduction of the number of parameters in adapters (with virtually no loss in quality) on the GLUE benchmark.
arXiv Detail & Related papers (2024-06-25T17:26:05Z) - Spectrum-Aware Parameter Efficient Fine-Tuning for Diffusion Models [73.88009808326387]
We propose a novel spectrum-aware adaptation framework for generative models.
Our method adjusts both singular values and their basis vectors of pretrained weights.
We introduce Spectral Ortho Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity.
arXiv Detail & Related papers (2024-05-31T17:43:35Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
Low-rank adaptation (LoRA) is based on the idea that the adaptation process is intrinsically low-dimensional.<n>We present MELoRA, a mini-ensemble low-rank adapters that uses fewer trainable parameters while maintaining a higher rank.<n>Our experimental results show that, compared to LoRA, MELoRA achieves better performance with 8 times fewer trainable parameters on natural language understanding tasks and 36 times fewer trainable parameters on instruction following tasks.
arXiv Detail & Related papers (2024-02-27T07:14:12Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
Various parameter-efficient fine-tuning (PEFT) techniques have been proposed to enable computationally efficient fine-tuning while maintaining model performance.
We present LoRETTA, a framework that significantly reduces trainable parameters through tensor-train decomposition.
LoRETTA achieves comparable or better performance than most widely used PEFT methods with up to $100times$ fewer parameters on the LLaMA-2-7B models.
arXiv Detail & Related papers (2024-02-18T01:20:00Z) - Tied-Lora: Enhancing parameter efficiency of LoRA with weight tying [6.172790376076545]
We introduce Tied-LoRA, a novel paradigm leveraging weight tying and selective training to enhance the parameter efficiency of Low-rank Adaptation (LoRA)
Our exploration encompasses different plausible combinations of parameter training and freezing, coupled with weight tying, aimed at identifying the optimal trade-off between performance and the count of trainable parameters.
arXiv Detail & Related papers (2023-11-16T05:29:39Z) - LoRAPrune: Structured Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning [56.88751562302793]
Low-rank adaption (LoRA) has emerged to fine-tune large language models (LLMs)
LoRAPrune is a new framework that delivers an accurate structured pruned model in a highly memory-efficient manner.
LoRAPrune achieves a reduction in perplexity by 4.81 on WikiText2 and 3.46 on PTB, while also decreasing memory usage by 52.6%.
arXiv Detail & Related papers (2023-05-28T15:15:48Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.