論文の概要: ContrastDiagnosis: Enhancing Interpretability in Lung Nodule Diagnosis
Using Contrastive Learning
- arxiv url: http://arxiv.org/abs/2403.05280v1
- Date: Fri, 8 Mar 2024 13:00:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 19:36:36.186763
- Title: ContrastDiagnosis: Enhancing Interpretability in Lung Nodule Diagnosis
Using Contrastive Learning
- Title(参考訳): コントラスト診断 : コントラスト学習を用いた肺結節診断における解釈性の向上
- Authors: Chenglong Wang, Yinqiao Yi, Yida Wang, Chengxiu Zhang, Yun Liu,
Kensaku Mori, Mei Yuan, Guang Yang
- Abstract要約: 臨床医のブラックボックスモデルに対する不信は、AI製品の臨床展開を妨げている。
ContrastDiagnosis(ContrastDiagnosis)を提案する。
AUCは0.977で高い診断精度を達成し、高い透明性と説明可能性を維持した。
- 参考スコア(独自算出の注目度): 23.541034347602935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the ongoing development of deep learning, an increasing number of AI
models have surpassed the performance levels of human clinical practitioners.
However, the prevalence of AI diagnostic products in actual clinical practice
remains significantly lower than desired. One crucial reason for this gap is
the so-called `black box' nature of AI models. Clinicians' distrust of black
box models has directly hindered the clinical deployment of AI products. To
address this challenge, we propose ContrastDiagnosis, a straightforward yet
effective interpretable diagnosis framework. This framework is designed to
introduce inherent transparency and provide extensive post-hoc explainability
for deep learning model, making them more suitable for clinical medical
diagnosis. ContrastDiagnosis incorporates a contrastive learning mechanism to
provide a case-based reasoning diagnostic rationale, enhancing the model's
transparency and also offers post-hoc interpretability by highlighting similar
areas. High diagnostic accuracy was achieved with AUC of 0.977 while maintain a
high transparency and explainability.
- Abstract(参考訳): ディープラーニングの継続的な発展に伴い、AIモデルが人間の臨床実践者のパフォーマンスレベルを上回っている。
しかし、実際の臨床実践におけるAI診断製品の頻度は、望んでいたよりも著しく低いままである。
このギャップの重要な理由は、いわゆる“ブラックボックス(black box)”的なaiモデルの性質にある。
臨床医のブラックボックスモデルに対する不信は、AI製品の臨床展開を直接妨げている。
この課題に対処するため, 簡便かつ効果的な診断フレームワークであるContrastDiagnosisを提案する。
本フレームワークは, 深層学習モデルに固有の透明性を導入し, 広範なポストホックな説明性を提供し, 臨床診断に適するように設計されている。
コントラスト診断には対比学習機構が組み込まれており、ケースベースの推論診断の根拠を提供し、モデルの透明性を高め、同様の領域を強調することでポストホックな解釈性を提供する。
AUCは0.977の精度で高い透明性と説明可能性を維持した。
関連論文リスト
- Analyzing the Effect of $k$-Space Features in MRI Classification Models [0.0]
医用イメージングに適した説明可能なAI手法を開発した。
我々は、画像領域と周波数領域の両方にわたるMRIスキャンを分析する畳み込みニューラルネットワーク(CNN)を採用している。
このアプローチは、初期のトレーニング効率を高めるだけでなく、追加機能がモデル予測にどのように影響するかの理解を深めます。
論文 参考訳(メタデータ) (2024-09-20T15:43:26Z) - Decoding Decision Reasoning: A Counterfactual-Powered Model for Knowledge Discovery [6.1521675665532545]
医用画像では、AIモデルの予測の背後にある根拠を明らかにすることが、信頼性を評価する上で重要である。
本稿では,意思決定推論と特徴識別機能を備えた説明可能なモデルを提案する。
提案手法を実装することにより,データ駆動モデルにより活用されるクラス固有の特徴を効果的に識別および可視化することができる。
論文 参考訳(メタデータ) (2024-05-23T19:00:38Z) - The Limits of Perception: Analyzing Inconsistencies in Saliency Maps in XAI [0.0]
説明可能な人工知能(XAI)は、AIの意思決定プロセスの解明に不可欠である。
ブラックボックス」として機能し、その理由が曖昧でアクセスできないため、誤診のリスクが高まる。
この透明性へのシフトは、単に有益であるだけでなく、医療におけるAI統合の責任を負うための重要なステップでもある。
論文 参考訳(メタデータ) (2024-03-23T02:15:23Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
感染性角膜炎(IK)の診断における知識誘導診断モデル(KGDM)の性能,解釈可能性,臨床的有用性について検討した。
AIベースのバイオマーカーの診断確率比(DOR)は3.011から35.233の範囲で有効である。
コラボレーションの参加者は、人間とAIの両方を上回るパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-01-14T02:10:54Z) - Deciphering knee osteoarthritis diagnostic features with explainable
artificial intelligence: A systematic review [4.918419052486409]
変形性膝関節症(OA)を診断するための既存の人工知能モデルは、その透明性と解釈可能性の欠如に対して批判を浴びている。
近年,説明可能な人工知能 (XAI) がモデルの予測に自信を与える特別な技術として出現している。
本報告では膝OA診断に用いるXAI技術について紹介する。
論文 参考訳(メタデータ) (2023-08-18T08:23:47Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。