論文の概要: Online Fine-Tuning of Carbon Emission Predictions using Real-Time Recurrent Learning for State Space Models
- arxiv url: http://arxiv.org/abs/2508.00804v1
- Date: Fri, 01 Aug 2025 17:37:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.972943
- Title: Online Fine-Tuning of Carbon Emission Predictions using Real-Time Recurrent Learning for State Space Models
- Title(参考訳): 実時間繰り返し学習を用いた状態空間モデルのためのオンライン二酸化炭素排出予測の微調整
- Authors: Julian Lemmel, Manuel Kranzl, Adam Lamine, Philipp Neubauer, Radu Grosu, Sophie Neubauer,
- Abstract要約: 本稿では,構造化状態空間モデル(SSM)の予測を実時間繰り返し学習を用いて推論時に微調整する手法を提案する。
組込み自動車ハードウェアから収集した小さな炭素排出量データセットを用いて,線形再帰単位SSMに対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 5.543765065730817
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper introduces a new approach for fine-tuning the predictions of structured state space models (SSMs) at inference time using real-time recurrent learning. While SSMs are known for their efficiency and long-range modeling capabilities, they are typically trained offline and remain static during deployment. Our method enables online adaptation by continuously updating model parameters in response to incoming data. We evaluate our approach for linear-recurrent-unit SSMs using a small carbon emission dataset collected from embedded automotive hardware. Experimental results show that our method consistently reduces prediction error online during inference, demonstrating its potential for dynamic, resource-constrained environments.
- Abstract(参考訳): 本稿では,構造化状態空間モデル(SSM)の予測を実時間繰り返し学習を用いて推論時に微調整する手法を提案する。
SSMはその効率性と長距離モデリング能力で知られているが、通常はオフラインでトレーニングされ、デプロイ中は静的のままである。
提案手法は,入力データに対するモデルパラメータの更新を連続的に行うことで,オンライン適応を可能にする。
組込み自動車ハードウェアから収集した小さな炭素排出量データセットを用いて線形再帰単位SSMに対するアプローチを評価する。
実験の結果,提案手法は推論中のオンライン予測誤差を連続的に低減し,動的資源制約環境の可能性を示した。
関連論文リスト
- Data-assimilated model-informed reinforcement learning [3.4748713192043876]
実際には、センサーはシステムの部分的および雑音的な測定(オブレーション)のみを提供することが多い。
本稿では,部分的かつノイズの多い可観測性を持つカオスシステムの制御を可能にするフレームワークを提案する。
DA-MIRLは、部分的な観測と近似モデルから、環境のカオス的ダイナミクスをリアルタイムで推定し、抑制する。
論文 参考訳(メタデータ) (2025-06-02T15:02:26Z) - Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
一般状態空間モデル(英: General State-space Model, SSM)は、統計機械学習において広く用いられ、時系列データに対して最も古典的な生成モデルの一つである。
オンラインシーケンシャルIWAE(OSIWAE)は、潜在状態の推測のためのモデルパラメータとマルコフ認識モデルの両方のオンライン学習を可能にする。
このアプローチは、最近提案されたオンライン変分SMC法よりも理論的によく確立されている。
論文 参考訳(メタデータ) (2024-11-04T16:12:37Z) - Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
本稿では,Voronoi Tessellation (DSOVT) フレームワークを用いたスパース観測からの動的システム予測について紹介する。
ボロノイテッセルレーションと深層学習モデルを統合することで、DSOVTは疎く非構造的な観測で力学系の予測に適している。
純粋にデータ駆動モデルと比較して、我々の物理学に基づくアプローチは、明示的に定式化された力学の中で物理法則を学習することができる。
論文 参考訳(メタデータ) (2024-08-31T13:43:52Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
我々は、Koopman Invertible Autoencoders (KIA) と呼ぶ、Koopman演算子理論に基づく新しい機械学習モデルを提案する。
KIAは、無限次元ヒルベルト空間における前方と後方のダイナミクスをモデル化することによって、システムの固有の特性を捉えている。
これにより,低次元表現を効率よく学習し,長期システムの挙動をより正確に予測することが可能になる。
論文 参考訳(メタデータ) (2023-09-19T03:42:55Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
オンライン連続学習(OCL)では、学習システムはデータのストリームを受け取り、予測とトレーニングの手順を順次実行する。
本稿では,線形予測量に対するニューラル表現と状態空間モデルを用いた確率ベイズオンライン学習モデルを提案する。
多クラス分類の実験では、モデルの予測能力と非定常性を捉える柔軟性を示す。
論文 参考訳(メタデータ) (2023-06-14T11:41:42Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
連続学習に基づく非教師付きリカレントスパイキングニューラルネットワークモデル(CLURSNN)を提案する。
CLURSNNは、ランダム遅延埋め込み(Random Delay Embedding)を使用して基盤となる動的システムを再構築することで、オンライン予測を行う。
提案手法は,進化するロレンツ63力学系を予測する際に,最先端のDNNモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-10T16:18:37Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - POLA: Online Time Series Prediction by Adaptive Learning Rates [4.105553918089042]
繰り返しニューラルネットワークモデルの学習速度を自動的に調整し、時系列パターンの変化に適応するPOLAを提案する。
POLAは、他のオンライン予測方法よりも総合的に、あるいは優れた予測性能を示す。
論文 参考訳(メタデータ) (2021-02-17T17:56:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。