論文の概要: UrBLiMP: A Benchmark for Evaluating the Linguistic Competence of Large Language Models in Urdu
- arxiv url: http://arxiv.org/abs/2508.01006v1
- Date: Fri, 01 Aug 2025 18:16:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.660207
- Title: UrBLiMP: A Benchmark for Evaluating the Linguistic Competence of Large Language Models in Urdu
- Title(参考訳): UrBLiMP:ウルドゥー語における大言語モデルの言語能力を評価するベンチマーク
- Authors: Farah Adeeba, Brian Dillon, Hassan Sajjad, Rajesh Bhatt,
- Abstract要約: 言語最小ペア(UrBLiMP)のUrduベンチマークについて述べる。
UrBLiMPは10コアの構文現象を対象とする5,696個の最小ペアから構成される。
UrBLiMPアノテーションの人間による評価は96.10%のアノテーション間の合意を得た。
- 参考スコア(独自算出の注目度): 12.952822154200497
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multilingual Large Language Models (LLMs) have shown remarkable performance across various languages; however, they often include significantly less data for low-resource languages such as Urdu compared to high-resource languages like English. To assess the linguistic knowledge of LLMs in Urdu, we present the Urdu Benchmark of Linguistic Minimal Pairs (UrBLiMP) i.e. pairs of minimally different sentences that contrast in grammatical acceptability. UrBLiMP comprises 5,696 minimal pairs targeting ten core syntactic phenomena, carefully curated using the Urdu Treebank and diverse Urdu text corpora. A human evaluation of UrBLiMP annotations yielded a 96.10% inter-annotator agreement, confirming the reliability of the dataset. We evaluate twenty multilingual LLMs on UrBLiMP, revealing significant variation in performance across linguistic phenomena. While LLaMA-3-70B achieves the highest average accuracy (94.73%), its performance is statistically comparable to other top models such as Gemma-3-27B-PT. These findings highlight both the potential and the limitations of current multilingual LLMs in capturing fine-grained syntactic knowledge in low-resource languages.
- Abstract(参考訳): 多言語大言語モデル(LLM)は、様々な言語で顕著なパフォーマンスを示しているが、Urduのような低リソース言語では、英語のような高リソース言語に比べて、はるかに少ないデータを含んでいることが多い。
ウルドゥー語におけるLLMの言語知識を評価するため,ウルドゥー語の最小ペア (UrBLiMP) であるウルドゥー語ベンチマーク(Urdu Benchmark of Linguistic Minimal Pairs, UrBLiMP) を提示する。
UrBLiMPは10コアの構文現象を対象とする5,696個の最小ペアで構成され、Urdu Treebankと多様なUrduテキストコーパスを用いて慎重にキュレートされている。
UrBLiMPアノテーションの人間による評価により、96.10%のアノテーション間の合意が得られ、データセットの信頼性が確認された。
我々はUrBLiMPの多言語LLMを20個評価し,言語現象における性能の有意な変動を明らかにした。
LLaMA-3-70Bは平均精度が最も高い(94.73%)が、その性能はGemma-3-27B-PTなどの他の上位モデルと統計的に比較できる。
これらの知見は、低リソース言語における微細な構文知識の獲得における、現在の多言語LLMの可能性と限界の両方を浮き彫りにしている。
関連論文リスト
- MuBench: Assessment of Multilingual Capabilities of Large Language Models Across 61 Languages [33.450081592217074]
MuBenchは61の言語をカバーし、幅広い機能を評価するベンチマークです。
我々は、最先端の多言語LLMを評価し、請求項と実際の言語カバレッジとの間に顕著なギャップを見いだした。
論文 参考訳(メタデータ) (2025-06-24T09:53:00Z) - MMLU-ProX: A Multilingual Benchmark for Advanced Large Language Model Evaluation [86.7047714187813]
MMLU-ProXは29の言語をカバーするベンチマークであり、英語のベンチマーク上に構築されている。
それぞれの言語バージョンは11,829の同一の質問で構成されており、直接言語間比較を可能にする。
効率的な評価ニーズを満たすため,言語毎の質問数は658件である。
論文 参考訳(メタデータ) (2025-03-13T15:59:20Z) - UrduLLaMA 1.0: Dataset Curation, Preprocessing, and Evaluation in Low-Resource Settings [0.7874708385247353]
本稿では,オープンソースのLlama-3.1-8B-Instructアーキテクチャから派生したUrduLLaMA 1.0を紹介する。
ローランド適応(LoRA)を利用して、41,000Urdu命令と約50,000Urdu翻訳ペアのモデルを微調整する。
論文 参考訳(メタデータ) (2025-02-24T08:38:21Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Language Ranker: A Metric for Quantifying LLM Performance Across High and Low-Resource Languages [48.40607157158246]
大規模言語モデル(LLM)は、英語、ドイツ語、フランス語のような高リソース言語で、低リソース言語の能力は依然として不十分である。
内部表現を用いたLLM性能に基づいて,言語をベンチマークし,ランク付けするための固有測度であるLanguage Rankerを提案する。
分析の結果,高リソース言語は英語との類似度が高く,性能が優れ,低リソース言語は類似度が低いことがわかった。
論文 参考訳(メタデータ) (2024-04-17T16:53:16Z) - Low-Resource Machine Translation through Retrieval-Augmented LLM Prompting: A Study on the Mambai Language [1.1702440973773898]
本研究では,Timor-Lesteで話される低音源のオーストロネシア語であるMambaiへの英語翻訳における大規模言語モデルの利用について検討した。
提案手法は, 並列文と辞書エントリの戦略的な選択と, プロンプトのための手法である。
辞書をインプロンプトに含め,-IDFで検索した文とセマンティック埋め込みを混合することにより,翻訳品質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-07T05:04:38Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
我々は、事前訓練された大規模言語モデル(LLM)が、アンダーリソース言語のパフォーマンスギャップを埋める可能性について検討する。
LLM は,低リソース言語における技術の現状を,かなりのマージンで容易に設定できることがわかった。
全ての言語について、人間の評価は最高のシステムで人間と同等のパフォーマンスを示すが、BLEUのスコアは英語に比べて崩壊する。
論文 参考訳(メタデータ) (2024-02-19T16:29:40Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
本稿では, マルチリンガル数学推論 (xMR) LLM の探索と学習の先駆者である。
我々は10の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
翻訳を利用して、10個の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
論文 参考訳(メタデータ) (2023-10-31T08:09:20Z) - ChatGPT MT: Competitive for High- (but not Low-) Resource Languages [62.178282377729566]
大規模言語モデル(LLM)は、機械翻訳(MT)を含む様々な言語タスクの実行を暗黙的に学習する。
MTコスト分析とともに,204言語を拡張した最初の実験的な証拠を提示する。
分析の結果,ChatGPTの相対的翻訳能力を決定する上で,言語リソースレベルが最も重要な特徴であることが判明した。
論文 参考訳(メタデータ) (2023-09-14T04:36:00Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Investigating the Translation Performance of a Large Multilingual
Language Model: the Case of BLOOM [8.858671209228536]
複数のデータセットにまたがる機械翻訳性能を評価することで,BLOOMの多言語能力に着目する。
本稿では, 素早い設計, モデルサイズ, 言語間移動, 帰納的文脈の利用など, 様々な側面について検討する。
論文 参考訳(メタデータ) (2023-03-03T13:23:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。