論文の概要: ReCoSeg++:Extended Residual-Guided Cross-Modal Diffusion for Brain Tumor Segmentation
- arxiv url: http://arxiv.org/abs/2508.01058v1
- Date: Fri, 01 Aug 2025 20:24:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.687551
- Title: ReCoSeg++:Extended Residual-Guided Cross-Modal Diffusion for Brain Tumor Segmentation
- Title(参考訳): ReCoSeg++:Residual-Guided Cross-Modal Diffusionによる脳腫瘍切除
- Authors: Sara Yavari, Rahul Nitin Pandya, Jacob Furst,
- Abstract要約: より大きく異質なBraTS 2021データセットにReCoSegアプローチを拡張した,半教師付き2段階のフレームワークを提案する。
第1段階では、残留誘導拡散確率モデル (DDPM) がFLAIR, T1, T2スキャンからT1ceモダリティを再構成することにより、クロスモーダル合成を行う。
第2段階では、軽量なU-Netが残基マップの連結を入力として、T1, T2, FLAIRによるT1ceと合成されたT1ceの差として計算し、腫瘍全体のセグメンテーションを改善する。
- 参考スコア(独自算出の注目度): 0.9374652839580183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of brain tumors in MRI scans is critical for clinical diagnosis and treatment planning. We propose a semi-supervised, two-stage framework that extends the ReCoSeg approach to the larger and more heterogeneous BraTS 2021 dataset, while eliminating the need for ground-truth masks for the segmentation objective. In the first stage, a residual-guided denoising diffusion probabilistic model (DDPM) performs cross-modal synthesis by reconstructing the T1ce modality from FLAIR, T1, and T2 scans. The residual maps, capturing differences between predicted and actual T1ce images, serve as spatial priors to enhance downstream segmentation. In the second stage, a lightweight U-Net takes as input the concatenation of residual maps, computed as the difference between real T1ce and synthesized T1ce, with T1, T2, and FLAIR modalities to improve whole tumor segmentation. To address the increased scale and variability of BraTS 2021, we apply slice-level filtering to exclude non-informative samples and optimize thresholding strategies to balance precision and recall. Our method achieves a Dice score of $93.02\%$ and an IoU of $86.7\%$ for whole tumor segmentation on the BraTS 2021 dataset, outperforming the ReCoSeg baseline on BraTS 2020 (Dice: $91.7\%$, IoU: $85.3\%$), and demonstrating improved accuracy and scalability for real-world, multi-center MRI datasets.
- Abstract(参考訳): MRI検査における脳腫瘍の正確なセグメンテーションは臨床診断と治療計画に重要である。
そこで我々は,ReCoSegアプローチを大規模で異質なBraTS 2021データセットに拡張する半教師付き2段階のフレームワークを提案する。
第1段階では、残留誘導拡散確率モデル (DDPM) がFLAIR, T1, T2スキャンからT1ceモダリティを再構成することにより、クロスモーダル合成を行う。
残余マップは、予測されたT1ce画像と実際のT1ce画像の違いを捉え、下流のセグメンテーションを強化するために空間的先行として機能する。
第2段階では、軽量なU-Netが残留マップの連結を入力として、T1, T2, FLAIRモダリティと実T1ceと合成T1ceの差として計算し、腫瘍全体のセグメンテーションを改善する。
BraTS 2021のスケールと変動性の向上に対処するため,非形式的サンプルを除去し,精度とリコールのバランスをとるためのしきい値戦略を最適化するためにスライスレベルフィルタを適用した。
提案手法は,BraTS 2021データセットの全腫瘍セグメンテーションに対して,Diceスコアが93.02\%,IoUが86.7\%,BraTS 2020のReCoSegベースラインが9.7\%(Dice:911.7\%,IoU:8.3\%)を上回り,実世界のマルチセンターMRIデータセットの精度とスケーラビリティの向上を図っている。
関連論文リスト
- MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
MAST-Proは,ダイナミックなMixture-of-Experts(D-MoE)とパン腫瘍セグメンテーションのための知識駆動プロンプトを統合した新しいフレームワークである。
具体的には、テキストと解剖学的プロンプトは、腫瘍表現学習を導くドメイン固有の事前情報を提供し、D-MoEは、ジェネリックと腫瘍固有の特徴学習のバランスをとる専門家を動的に選択する。
マルチ解剖学的腫瘍データセットの実験では、MAST-Proは最先端のアプローチよりも優れており、トレーニング可能なパラメータを91.04%削減し、平均改善の5.20%を達成している。
論文 参考訳(メタデータ) (2025-03-18T15:39:44Z) - Interactive 3D Segmentation for Primary Gross Tumor Volume in Oropharyngeal Cancer [1.9997842016096374]
我々は最先端のアルゴリズムを実装し、新しい2段階のインタラクティブ・クリック・リファインメント・フレームワークを提案する。
2S-ICRフレームワークは、ユーザインタラクションのないDiceの類似係数0.713$pm$0.152と、5つのインタラクション後の0.824$pm$0.099を達成し、どちらの場合も既存の手法よりも優れている。
論文 参考訳(メタデータ) (2024-09-10T15:58:21Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
本稿では,多様なERUSシナリオをカバーする最初のベンチマークデータセットを収集し,注釈付けする。
ERUS-10Kデータセットは77の動画と10,000の高解像度アノテートフレームで構成されています。
本稿では,ASTR (Adaptive Sparse-context TRansformer) という大腸癌セグメンテーションのベンチマークモデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T15:04:42Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI [59.86827659781022]
nnU-Netモデル(TotalSegmentator)をMRIおよび80原子構造で訓練した。
予測されたセグメンテーションと専門家基準セグメンテーションとの間には,ディススコアが算出され,モデル性能が評価された。
オープンソースで使いやすいモデルは、80構造の自動的で堅牢なセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Self-calibrated convolution towards glioma segmentation [45.74830585715129]
我々は,nnU-Netネットワークの異なる部分における自己校正畳み込みを評価し,スキップ接続における自己校正加群が,拡張腫瘍と腫瘍コアセグメンテーションの精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-02-07T19:51:13Z) - An Unpaired Cross-modality Segmentation Framework Using Data
Augmentation and Hybrid Convolutional Networks for Segmenting Vestibular
Schwannoma and Cochlea [7.7150383247700605]
CrossMoDAの課題は、未ラベル高分解能T2スキャンで前庭神経癌(VS)腫瘍とコチェリー領域を自動的に分離することである。
2022年版では、セグメンテーションタスクを多施設スキャンで拡張している。
本稿では,データ拡張とハイブリッド畳み込みネットワークを用いた非対向型クロスモーダルセグメンテーションフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T01:15:33Z) - Hybrid Window Attention Based Transformer Architecture for Brain Tumor
Segmentation [28.650980942429726]
細かな特徴を抽出するための2つのウィンドウ化戦略に従うボリューム視覚変換器を提案する。
FeTS Challenge 2022データセット上で,ネットワークアーキテクチャをトレーニングし,評価した。
オンライン検証データセットのパフォーマンスは以下の通りである。 Dice similarity Score of 81.71%, 91.38%, 85.40%。
論文 参考訳(メタデータ) (2022-09-16T03:55:48Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z) - Covariance Self-Attention Dual Path UNet for Rectal Tumor Segmentation [5.161531917413708]
CSA-DPUNet(Covariance Self-Attention Dual Path UNet)を提案する。
CSA-DPUNetは15.31%、7.2%、7.2%、11.8%、9.5%のDice係数、P、R、F1をそれぞれ改善している。
論文 参考訳(メタデータ) (2020-11-04T08:01:19Z) - A Two-Stage Cascade Model with Variational Autoencoders and Attention
Gates for MRI Brain Tumor Segmentation [2.055949720959582]
本稿では,脳腫瘍領域分割のための2段階エンコーダデコーダモデルを提案する。
変分オートエンコーダの正規化は、オーバーフィッティング問題を防止するために両段階で利用される。
提案法は, 腫瘍全体, 腫瘍コア, 造影腫瘍全体に対して平均Diceスコア0.9041, 0.8350, 0.7958, Hausdorff距離95%の4.953, 6.299, 23.608を得る。
論文 参考訳(メタデータ) (2020-11-04T05:55:06Z) - Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net
neural networks: a BraTS 2020 challenge solution [56.17099252139182]
U-netのようなニューラルネットワークを用いた脳腫瘍セグメント化作業の自動化と標準化を行う。
2つの独立したモデルのアンサンブルが訓練され、それぞれが脳腫瘍のセグメンテーションマップを作成した。
我々の解は、最終試験データセットにおいて、Diceの0.79、0.89、0.84、およびHausdorffの95%の20.4、6.7、19.5mmを達成した。
論文 参考訳(メタデータ) (2020-10-30T14:36:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。