GMAT: Grounded Multi-Agent Clinical Description Generation for Text Encoder in Vision-Language MIL for Whole Slide Image Classification
- URL: http://arxiv.org/abs/2508.01293v1
- Date: Sat, 02 Aug 2025 09:59:39 GMT
- Title: GMAT: Grounded Multi-Agent Clinical Description Generation for Text Encoder in Vision-Language MIL for Whole Slide Image Classification
- Authors: Ngoc Bui Lam Quang, Nam Le Nguyen Binh, Thanh-Huy Nguyen, Le Thien Phuc Nguyen, Quan Nguyen, Ulas Bagci,
- Abstract summary: Multiple Instance Learning (MIL) is the leading approach for whole slide image (WSI) classification.<n>Recent work has introduced vision-language models (VLMs) into MIL pipelines to incorporate medical knowledge.<n>We propose a vision-language MIL framework with two key contributions.
- Score: 4.922864692096282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiple Instance Learning (MIL) is the leading approach for whole slide image (WSI) classification, enabling efficient analysis of gigapixel pathology slides. Recent work has introduced vision-language models (VLMs) into MIL pipelines to incorporate medical knowledge through text-based class descriptions rather than simple class names. However, when these methods rely on large language models (LLMs) to generate clinical descriptions or use fixed-length prompts to represent complex pathology concepts, the limited token capacity of VLMs often constrains the expressiveness and richness of the encoded class information. Additionally, descriptions generated solely by LLMs may lack domain grounding and fine-grained medical specificity, leading to suboptimal alignment with visual features. To address these challenges, we propose a vision-language MIL framework with two key contributions: (1) A grounded multi-agent description generation system that leverages curated pathology textbooks and agent specialization (e.g., morphology, spatial context) to produce accurate and diverse clinical descriptions; (2) A text encoding strategy using a list of descriptions rather than a single prompt, capturing fine-grained and complementary clinical signals for better alignment with visual features. Integrated into a VLM-MIL pipeline, our approach shows improved performance over single-prompt class baselines and achieves results comparable to state-of-the-art models, as demonstrated on renal and lung cancer datasets.
Related papers
- Zeus: Zero-shot LLM Instruction for Union Segmentation in Multimodal Medical Imaging [4.341503087761129]
Conducting multimodal learning involves visual and text modalities shown as a solution, but collecting paired vision-language datasets is expensive and time-consuming.<n>Inspired by the superior ability in numerous cross-modal tasks for Large Language Models (LLMs), we proposed a novel Vision-LLM union framework to address the issues.
arXiv Detail & Related papers (2025-04-09T23:33:35Z) - Slide-Level Prompt Learning with Vision Language Models for Few-Shot Multiple Instance Learning in Histopathology [21.81603581614496]
We address the challenge of few-shot classification in histopathology whole slide images (WSIs)<n>Our method distinguishes itself by utilizing pathological prior knowledge from language models to identify crucial local tissue types (patches) for WSI classification.<n>Our approach effectively aligns patch images with tissue types, and we fine-tune our model via prompt learning using only a few labeled WSIs per category.
arXiv Detail & Related papers (2025-03-21T15:40:37Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
We propose a novel framework called Multi-Resolution Prompt-guided Hybrid Embedding (MR-PHE) to address these challenges in zero-shot histopathology image classification.<n>We introduce a hybrid embedding strategy that integrates global image embeddings with weighted patch embeddings.<n>A similarity-based patch weighting mechanism assigns attention-like weights to patches based on their relevance to class embeddings.
arXiv Detail & Related papers (2025-03-13T12:18:37Z) - ViLa-MIL: Dual-scale Vision-Language Multiple Instance Learning for Whole Slide Image Classification [52.405499816861635]
Multiple instance learning (MIL)-based framework has become the mainstream for processing the whole slide image (WSI)<n>We propose a dual-scale vision-language multiple instance learning (ViLa-MIL) framework for whole slide image classification.
arXiv Detail & Related papers (2025-02-12T13:28:46Z) - EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models [80.00303150568696]
We propose a novel Multimodal Large Language Models (MLLM) that empowers comprehension of arbitrary referring visual prompts with less training efforts than existing approaches.
Our approach embeds referring visual prompts as spatial concepts conveying specific spatial areas comprehensible to the MLLM.
We also propose a Geometry-Agnostic Learning paradigm (GAL) to further disentangle the MLLM's region-level comprehension with the specific formats of referring visual prompts.
arXiv Detail & Related papers (2024-09-25T08:22:00Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
We announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports.
Based on this dataset, we focus on the challanging task of unsupervised pretraining.
We propose ViKL, a framework that synergizes Visual, Knowledge, and Linguistic features.
arXiv Detail & Related papers (2024-09-24T05:01:23Z) - Pseudo-Prompt Generating in Pre-trained Vision-Language Models for Multi-Label Medical Image Classification [3.1029532920699934]
We introduce a novel prompt generation approach in by text generation in natural language processing (NLP)
Our method, named Pseudo-Prompt Generating (PsPG), capitalizes on the priori knowledge of multi-modal features.
Features a RNN-based decoder, PsPG autoregressively generates class-tailored embedding vectors, i.e., pseudo-prompts.
arXiv Detail & Related papers (2024-05-10T13:27:32Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
We present a novel language-tied self-supervised learning framework, Hierarchical Language-tied Self-Supervision (HLSS) for histopathology images.
Our resulting model achieves state-of-the-art performance on two medical imaging benchmarks, OpenSRH and TCGA datasets.
arXiv Detail & Related papers (2024-03-21T17:58:56Z) - UMG-CLIP: A Unified Multi-Granularity Vision Generalist for Open-World Understanding [90.74967596080982]
This paper extends Contrastive Language-Image Pre-training (CLIP) with multi-granularity alignment.
We develop a Unified Multi-Granularity learning framework, termed UMG-CLIP, which simultaneously empowers the model with versatile perception abilities.
With parameter efficient tuning, UMG-CLIP surpasses current widely used CLIP variants and achieves state-of-the-art performance on diverse image understanding benchmarks.
arXiv Detail & Related papers (2024-01-12T06:35:09Z) - LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation [51.08810811457617]
vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO.
We develop a method for instruction-tuning an LLM only on text to gain vision-language capabilities for medical images.
Our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks.
arXiv Detail & Related papers (2023-05-19T07:44:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.