CARGO: A Co-Optimization Framework for EV Charging and Routing in Goods Delivery Logistics
- URL: http://arxiv.org/abs/2508.01476v1
- Date: Sat, 02 Aug 2025 20:08:46 GMT
- Title: CARGO: A Co-Optimization Framework for EV Charging and Routing in Goods Delivery Logistics
- Authors: Arindam Khanda, Anurag Satpathy, Amit Jha, Sajal K. Das,
- Abstract summary: We propose a framework addressing the EV-based delivery route planning problem (EDRP)<n>We show up to 39% and 22% reductions in the charging cost over EDF and NDF, respectively, while completing comparable deliveries.
- Score: 5.696586139612419
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With growing interest in sustainable logistics, electric vehicle (EV)-based deliveries offer a promising alternative for urban distribution. However, EVs face challenges due to their limited battery capacity, requiring careful planning for recharging. This depends on factors such as the charging point (CP) availability, cost, proximity, and vehicles' state of charge (SoC). We propose CARGO, a framework addressing the EV-based delivery route planning problem (EDRP), which jointly optimizes route planning and charging for deliveries within time windows. After proving the problem's NP-hardness, we propose a mixed integer linear programming (MILP)-based exact solution and a computationally efficient heuristic method. Using real-world datasets, we evaluate our methods by comparing the heuristic to the MILP solution, and benchmarking it against baseline strategies, Earliest Deadline First (EDF) and Nearest Delivery First (NDF). The results show up to 39% and 22% reductions in the charging cost over EDF and NDF, respectively, while completing comparable deliveries.
Related papers
- Coalitional Bargaining via Reinforcement Learning: An Application to
Collaborative Vehicle Routing [49.00137468773683]
Collaborative Vehicle Routing is where delivery companies cooperate by sharing their delivery information and performing delivery requests on behalf of each other.
This achieves economies of scale and thus reduces cost, greenhouse gas emissions, and road congestion.
But which company should partner with whom, and how much should each company be compensated?
Traditional game theoretic solution concepts, such as the Shapley value or nucleolus, are difficult to calculate for the real-world problem of Collaborative Vehicle Routing.
arXiv Detail & Related papers (2023-10-26T15:04:23Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
Multi-agent deep reinforcement learning (MADRL) has proven its effectiveness in EV charging control.
Existing MADRL-based approaches fail to consider the natural power flow of EV charging/discharging in the distribution network.
This paper proposes a novel approach that combines multi-EV charging/discharging with a radial distribution network (RDN) operating under optimal power flow.
arXiv Detail & Related papers (2023-08-17T05:34:46Z) - Predict+Optimize Problem in Renewable Energy Scheduling [31.032838966665828]
This paper benchmarks solutions from the IEEE-CIS Technical Challenge on Predict+ for Renewable Energy Scheduling.<n>The top-ranked method employed optimization using LightGBM ensembles achieved at least a 2% reduction in energy costs.<n>The novelty of this work lies in its comprehensive evaluation of Predict+ methodologies applied to a real-world renewable energy scheduling problem.
arXiv Detail & Related papers (2022-12-21T02:34:12Z) - Resource Constrained Vehicular Edge Federated Learning with Highly
Mobile Connected Vehicles [41.02566275644629]
We propose a vehicular edge federated learning (VEFL) solution, where an edge server leverages highly mobile connected vehicles' (CVs') onboard central processing units ( CPUs) and local datasets to train a global model.
We devise joint VEFL and radio access technology (RAT) parameters optimization problems under delay, energy and cost constraints to maximize the probability of successful reception of the locally trained models.
arXiv Detail & Related papers (2022-10-27T14:33:06Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - A Deep Reinforcement Learning-Based Charging Scheduling Approach with
Augmented Lagrangian for Electric Vehicle [2.686271754751717]
This paper formulates the EV charging scheduling problem as a constrained Markov decision process (CMDP)
A novel safe off-policy reinforcement learning (RL) approach is proposed in this paper to solve the CMDP.
Comprehensive numerical experiments with real-world electricity price demonstrate that our proposed algorithm can achieve high solution optimality and constraints compliance.
arXiv Detail & Related papers (2022-09-20T14:56:51Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
The paper proposes a fast data-driven setup that uses the sparse and hybrid Gaussian processes (GP) framework to model the power flow equations with input uncertainty.
We advocate the efficiency of the proposed approach by a numerical study over multiple IEEE test cases showing up to two times faster and more accurate solutions.
arXiv Detail & Related papers (2022-08-30T09:27:59Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
The electric vehicle routing problem (EVRP) has garnered great interest from researchers and industrialists in an attempt to move from fuel-based vehicles to healthier and more efficient electric vehicles (EVs)
Previous works target logistics and delivery-related solutions wherein a homogeneous fleet of commercial EVs have to return to the initial point after making multiple stops.
We perform multi-objective optimization - minimizing the total trip time and the cumulative cost of charging.
arXiv Detail & Related papers (2022-08-26T05:09:59Z) - A Reinforcement Learning Approach for Electric Vehicle Routing Problem
with Vehicle-to-Grid Supply [2.6066825041242367]
We present QuikRouteFinder that uses reinforcement learning (RL) for EV routing to overcome these challenges.
Results from RL are compared against exact formulations based on mixed-integer linear program (MILP) and genetic algorithm (GA) metaheuristics.
arXiv Detail & Related papers (2022-04-12T06:13:06Z) - Learning to Operate an Electric Vehicle Charging Station Considering
Vehicle-grid Integration [4.855689194518905]
We propose a novel centralized allocation and decentralized execution (CADE) reinforcement learning (RL) framework to maximize the charging station's profit.
In the centralized allocation process, EVs are allocated to either the waiting or charging spots. In the decentralized execution process, each charger makes its own charging/discharging decision while learning the action-value functions from a shared replay memory.
Numerical results show that the proposed CADE framework is both computationally efficient and scalable, and significantly outperforms the baseline model predictive control (MPC)
arXiv Detail & Related papers (2021-11-01T23:10:28Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
We study the design of a rational decision support system (RDSS) for a connected and autonomous vehicle charging infrastructure (CAV-CI)
In the considered CAV-CI, the distribution system operator (DSO) deploys electric vehicle supply equipment (EVSE) to provide an EV charging facility for human-driven connected vehicles (CVs) and autonomous vehicles (AVs)
The charging request by the human-driven EV becomes irrational when it demands more energy and charging period than its actual need.
We propose a novel risk adversarial multi-agent learning system (ALS) for CAV-CI to solve
arXiv Detail & Related papers (2021-08-02T02:38:15Z) - Efficient algorithms for electric vehicles' min-max routing problem [4.640835690336652]
An increase in greenhouse gases emission from the transportation sector has led companies and the government to elevate and support the production of electric vehicles (EV)
With recent developments in urbanization and e-commerce, transportation companies are replacing their conventional fleet with EVs to strengthen the efforts for sustainable and environment-friendly operations.
deploying a fleet of EVs asks for efficient routing and recharging strategies to alleviate their limited range and mitigate the battery degradation rate.
arXiv Detail & Related papers (2020-08-07T18:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.