論文の概要: Simulating Classroom Education with LLM-Empowered Agents
- arxiv url: http://arxiv.org/abs/2406.19226v2
- Date: Wed, 27 Nov 2024 08:50:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 15:23:09.297945
- Title: Simulating Classroom Education with LLM-Empowered Agents
- Title(参考訳): LLMエージェントを用いた教室教育のシミュレーション
- Authors: Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao, Jianxiao Jiang, Jie Cao, Huiqin Liu, Zhiyuan Liu, Lei Hou, Juanzi Li,
- Abstract要約: 大型言語モデル (LLM) は、様々な知的教育タスクに応用され、教育支援を行っている。
マルチエージェント型教室シミュレーション教育フレームワークSimClassを提案する。
代表的クラスの役割を認識し、自動授業のための新しいクラス制御機構を導入する。
- 参考スコア(独自算出の注目度): 48.26286735827104
- License:
- Abstract: Large language models (LLMs) have been applied across various intelligent educational tasks to assist teaching. While preliminary studies have focused on task-specific, independent LLM-empowered agents, the potential of LLMs within a multi-agent collaborative framework for classroom simulation with real user participation remains unexplored. In this work, we propose SimClass, a multi-agent classroom simulation teaching framework. We recognize representative class roles and introduce a novel class control mechanism for automatic classroom teaching, and conduct user experiments in two real-world courses. Using the Flanders Interactive Analysis System and Community of Inquiry theoretical frameworks from educational analysis, we demonstrate that LLMs can simulate a dynamic learning environment for users with active teacher-student and student-student interactions. We also observe group behaviors among agents in SimClass, where agents collaborate to create enlivening interactions in classrooms to improve user learning process. We hope this work pioneers the application of LLM-empowered multi-agent systems in virtual classroom teaching.
- Abstract(参考訳): 大型言語モデル (LLM) は、様々な知的な教育タスクに応用され、教育を支援している。
予備研究はタスク特異的で独立したLDMを動力とするエージェントに焦点を合わせてきたが、実際のユーザ参加を伴う教室シミュレーションのためのマルチエージェント協調フレームワークにおけるLCMの可能性は未解明のままである。
本研究では,マルチエージェントの教室シミュレーション教育フレームワークであるSimClassを提案する。
代表的クラスの役割を認識し、自動授業のための新しいクラス制御機構を導入し、2つの現実世界のコースでユーザー実験を行う。
本研究では、Flanders Interactive Analysis SystemとCommunity of Inquiry理論フレームワークを教育分析から利用し、LLMがアクティブな教師/学生/学生のインタラクションを持つユーザのための動的学習環境をシミュレートできることを実証する。
また,SimClassにおけるエージェント間のグループ行動も観察し,学習プロセスを改善するために,エージェントが協調して教室内での対話を創出する。
本研究は,LLMを利用した仮想教室教育におけるマルチエージェントシステムの先駆的活用を期待する。
関連論文リスト
- MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
推論問題に対するマルチエージェントLLMトレーニング(MALT)に向けた第一歩を提示する。
提案手法では,ヘテロジニアスLSMが割り当てられた逐次的マルチエージェント構成を用いる。
我々は,MATH,GSM8k,CQAにまたがるアプローチを評価し,MALT on Llama 3.1 8Bモデルでそれぞれ14.14%,7.12%,9.40%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - Students Rather Than Experts: A New AI For Education Pipeline To Model More Human-Like And Personalised Early Adolescences [11.576679362717478]
本研究は,仮想学生エージェントをモデル化するための文脈としての言語学習に焦点を当てた。
教師と生徒の個人的交流のデータセットを様々な性格特性でキュレートすることにより,多次元的評価実験を行う。
論文 参考訳(メタデータ) (2024-10-21T07:18:24Z) - ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning [49.447777286862994]
ConMLは、さまざまなメタ学習アルゴリズムに適用可能な、普遍的なメタ学習フレームワークである。
我々は、ConMLが最適化ベース、メートル法ベース、およびアモータイズベースメタ学習アルゴリズムとシームレスに統合できることを実証した。
論文 参考訳(メタデータ) (2024-10-08T12:22:10Z) - Synergistic Simulations: Multi-Agent Problem Solving with Large Language Models [36.571597246832326]
大規模言語モデル(LLM)は,マルチエージェントシステムの開発を容易にする能力の実証がますます進んでいる。
本稿では,エージェントとワールドインタラクションをひとつのシミュレーションに統合し,複数のエージェントが協調して問題解決を行う方法を提案する。
我々は,2人のルームメイトとエージェントが協調してプログラミング作業を行う物理スタジオアパートの2つのシミュレーションを実装した。
論文 参考訳(メタデータ) (2024-09-14T21:53:35Z) - MathVC: An LLM-Simulated Multi-Character Virtual Classroom for Mathematics Education [18.449515431619837]
大規模言語モデル(LLM)は、最近、数学的な問題をモデル化し、文字をシミュレートする双方で強力な能力を示した。
複数のLDMを模擬した学生用仮想教室であるMATHVCについて紹介する。
シミュレーションにMMドメイン知識を統合すること、文字シミュレーションの基盤としてシンボルスキーマを定義すること、対話手順を推進するためにプラットフォームレベルでメタプランナを設計すること、の3つの革新を提案する。
論文 参考訳(メタデータ) (2024-04-10T03:35:51Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - Experiential Co-Learning of Software-Developing Agents [83.34027623428096]
大規模言語モデル(LLM)は、特にソフトウェア開発において、様々な領域に大きな変化をもたらした。
本稿では,新しいLLM学習フレームワークであるExperiential Co-Learningを紹介する。
実験では、このフレームワークにより、エージェントは、目に見えないソフトウェア開発タスクをより効果的に対処できることを示した。
論文 参考訳(メタデータ) (2023-12-28T13:50:42Z) - CGMI: Configurable General Multi-Agent Interaction Framework [0.0]
ヒューマンインタラクションを現実のシナリオで再現するために設計された汎用多エージェントインタラクション(CGMI)フレームワーク。
エージェントパーソナリティの割り当て,検出,維持のための木構造的手法を提案する。
また,仮想環境の現実性を高めるために汎用エージェントを統合した。
論文 参考訳(メタデータ) (2023-08-24T02:03:29Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - Parallel Knowledge Transfer in Multi-Agent Reinforcement Learning [0.2538209532048867]
本稿では,MARL(Parallel Attentional Transfer)における新しい知識伝達フレームワークを提案する。
PAT,学生モード,自己学習モードの2つの動作モードを設計する。
エージェントが環境に不慣れな場合、学生モードにおける共有注意機構は、エージェントの行動を決定するために、他のエージェントからの学習知識を効果的に選択する。
論文 参考訳(メタデータ) (2020-03-29T17:42:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。