論文の概要: Semantically-Guided Inference for Conditional Diffusion Models: Enhancing Covariate Consistency in Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2508.01761v1
- Date: Sun, 03 Aug 2025 14:04:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.051039
- Title: Semantically-Guided Inference for Conditional Diffusion Models: Enhancing Covariate Consistency in Time Series Forecasting
- Title(参考訳): 条件付き拡散モデルに対する逐次誘導推論:時系列予測における共変量一貫性の強化
- Authors: Rui Ding, Hanyang Meng, Zeyang Zhang, Jielong Yang,
- Abstract要約: SemGuideは条件付き拡散モデルにおける共変量一貫性を高めるプラグイン・アンド・プレイの推論時間法である。
本稿では,中間拡散状態と将来の共変量とのセマンティックアライメントを評価するためのスコアリングネットワークを提案する。
- 参考スコア(独自算出の注目度): 6.716179859091235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated strong performance in time series forecasting, yet often suffer from semantic misalignment between generated trajectories and conditioning covariates, especially under complex or multimodal conditions. To address this issue, we propose SemGuide, a plug-and-play, inference-time method that enhances covariate consistency in conditional diffusion models. Our approach introduces a scoring network to assess the semantic alignment between intermediate diffusion states and future covariates. These scores serve as proxy likelihoods in a stepwise importance reweighting procedure, which progressively adjusts the sampling path without altering the original training process. The method is model-agnostic and compatible with any conditional diffusion framework. Experiments on real-world forecasting tasks show consistent gains in both predictive accuracy and covariate alignment, with especially strong performance under complex conditioning scenarios.
- Abstract(参考訳): 拡散モデルは時系列予測において強い性能を示してきたが、しばしば発生した軌跡と条件付き共変量、特に複雑または多モード条件下での意味的ミスアライメントに悩まされる。
この問題に対処するために,条件付き拡散モデルにおける共変量一貫性を高めるプラグイン・アンド・プレイ・推論時間法であるSemGuideを提案する。
本稿では,中間拡散状態と将来の共変量とのセマンティックアライメントを評価するためのスコアリングネットワークを提案する。
これらのスコアは、段階的に重要な再重み付け手順において、元のトレーニングプロセスを変更することなく、サンプリングパスを段階的に調整するプロキシ可能性として機能する。
この方法はモデルに依存しず、任意の条件拡散フレームワークと互換性がある。
実世界の予測タスクの実験は、予測精度と共変アライメントの両方において一貫した利得を示し、特に複雑な条件付きシナリオ下での強い性能を示す。
関連論文リスト
- Unified Flow Matching for Long Horizon Event Forecasting [3.0639815065447036]
本稿では,マーク付き時間点プロセスのための一貫したフローマッチングフレームワークを提案する。
両コンポーネントの連続時間フローを学習することにより,逐次復号化を伴わずにコヒーレントな長地平線イベントトラジェクトリを生成する。
実世界の6つのベンチマークでモデルを評価し,精度と生成効率の両面で自己回帰ベースラインと拡散ベースラインを大幅に改善した。
論文 参考訳(メタデータ) (2025-08-06T19:42:49Z) - Inference-Time Scaling of Diffusion Language Models with Particle Gibbs Sampling [62.640128548633946]
離散拡散モデルに対する粒子ギブズサンプリングに基づく新しい推論時間スケーリング手法を提案する。
提案手法は,報酬誘導テキスト生成タスクにおける事前推定時間戦略を常に上回る。
論文 参考訳(メタデータ) (2025-07-11T08:00:47Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
我々は、一貫した拡散に基づく世界モデルを学習する上で重要なボトルネックは、最適下予測能力にあると主張している。
本稿では,拡散に基づく世界モデリングフレームワークであるForesight Diffusion(ForeDiff)を提案する。
論文 参考訳(メタデータ) (2025-05-22T10:01:59Z) - Probabilistic Forecasting via Autoregressive Flow Matching [1.5467259918426441]
FlowTimeは、時系列データの確率予測のための生成モデルである。
我々は、将来の観測の連成分布を条件密度の列に分解し、それぞれが共有フローを介してモデル化される。
本研究では,複数の動的システムおよび実世界の予測タスクにおけるFlowTimeの有効性を示す。
論文 参考訳(メタデータ) (2025-03-13T13:54:24Z) - Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models [71.63194926457119]
動的拡散(DyDiff, Dynamical Diffusion)は, 時間的に意識された前と逆のプロセスを含む理論的に健全なフレームワークである。
科学的時間的予測、ビデオ予測、時系列予測に関する実験は、動的拡散が時間的予測タスクのパフォーマンスを一貫して改善することを示した。
論文 参考訳(メタデータ) (2025-03-02T16:10:32Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Continuous Ensemble Weather Forecasting with Diffusion models [10.730406954385927]
連続アンサンブル予測は拡散モデルにおけるアンサンブル予測をサンプリングするための新しいフレキシブルな手法である。
時間的に一貫したアンサンブル軌道を、自動回帰ステップなしで完全に並列に生成することができる。
本手法は, 確率特性のよいグローバル気象予報において, 競争力のある結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-07T18:51:23Z) - Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting [19.383395337330082]
本稿では,CCDM(Contrastive Conditional Diffusion)モデルを提案する。
提案したCCDMは,現在最先端の拡散予測器と比較して優れた予測能力を示すことができる。
論文 参考訳(メタデータ) (2024-10-03T03:13:15Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Sequential Bayesian Neural Subnetwork Ensembles [4.6354120722975125]
本稿では、トレーニング過程を通じてモデルの複雑さを一貫して維持する動的ベイズニューラルワークのシーケンシャルアンサンブルに対するアプローチを提案する。
提案手法は,予測精度,不確実性推定,アウト・オブ・ディストリビューション検出,および対向ロバスト性の観点から,従来の密度決定モデルとスパース決定モデル,ベイズアンサンブルモデルより優れる。
論文 参考訳(メタデータ) (2022-06-01T22:57:52Z) - Composing Normalizing Flows for Inverse Problems [89.06155049265641]
本稿では,2つの流れモデルの合成として,対象条件を推定する近似推論フレームワークを提案する。
本手法は,様々な逆問題に対して評価し,不確実性のある高品質な試料を作製することを示した。
論文 参考訳(メタデータ) (2020-02-26T19:01:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。