論文の概要: Unified Flow Matching for Long Horizon Event Forecasting
- arxiv url: http://arxiv.org/abs/2508.04843v1
- Date: Wed, 06 Aug 2025 19:42:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.630606
- Title: Unified Flow Matching for Long Horizon Event Forecasting
- Title(参考訳): 長距離イベント予測のための統一フローマッチング
- Authors: Xiao Shou,
- Abstract要約: 本稿では,マーク付き時間点プロセスのための一貫したフローマッチングフレームワークを提案する。
両コンポーネントの連続時間フローを学習することにより,逐次復号化を伴わずにコヒーレントな長地平線イベントトラジェクトリを生成する。
実世界の6つのベンチマークでモデルを評価し,精度と生成効率の両面で自己回帰ベースラインと拡散ベースラインを大幅に改善した。
- 参考スコア(独自算出の注目度): 3.0639815065447036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling long horizon marked event sequences is a fundamental challenge in many real-world applications, including healthcare, finance, and user behavior modeling. Existing neural temporal point process models are typically autoregressive, predicting the next event one step at a time, which limits their efficiency and leads to error accumulation in long-range forecasting. In this work, we propose a unified flow matching framework for marked temporal point processes that enables non-autoregressive, joint modeling of inter-event times and event types, via continuous and discrete flow matching. By learning continuous-time flows for both components, our method generates coherent long horizon event trajectories without sequential decoding. We evaluate our model on six real-world benchmarks and demonstrate significant improvements over autoregressive and diffusion-based baselines in both accuracy and generation efficiency.
- Abstract(参考訳): 長い地平線マーク付きイベントシーケンスのモデリングは、医療、金融、ユーザー行動モデリングを含む多くの現実世界のアプリケーションにおいて、基本的な課題である。
既存のニューラル・テンポラル・ポイント・プロセス・モデルは通常自己回帰的であり、次の事象を1ステップずつ予測し、その効率を制限し、長距離予測においてエラーの蓄積につながる。
本研究では,連続的および離散的なフローマッチングを通じて,イベント間時間とイベントタイプを非自己回帰的,共同でモデリングすることのできる,マーク付き時間点プロセスのための一貫したフローマッチングフレームワークを提案する。
両コンポーネントの連続時間フローを学習することにより,逐次復号化を伴わずにコヒーレントな長地平線イベントトラジェクトリを生成する。
実世界の6つのベンチマークでモデルを評価し,精度と生成効率の両面で自己回帰ベースラインと拡散ベースラインを大幅に改善した。
関連論文リスト
- FELLE: Autoregressive Speech Synthesis with Token-Wise Coarse-to-Fine Flow Matching [51.32059240975148]
FELLEは、言語モデリングとトークンワイドフローマッチングを統合する自動回帰モデルである。
各連続値トークンに対して、FELLEは、前ステップからの情報を組み込んで、フローマッチングにおける一般的な事前分布を変更する。
FELLEは、言語モデルの出力に基づいて階層的に連続値のトークンを生成する。
論文 参考訳(メタデータ) (2025-02-16T13:54:32Z) - EventFlow: Forecasting Temporal Point Processes with Flow Matching [12.976042923229466]
機械学習では、ニューラルネットワークを使用して自己回帰的に時間点過程をモデル化することが一般的である。
本研究では,時間的ポイントプロセスのための非自己回帰生成モデルであるEventFlowを提案する。
論文 参考訳(メタデータ) (2024-10-09T20:57:00Z) - Non-autoregressive Sequence-to-Sequence Vision-Language Models [59.445765313094434]
本稿では,デコーダ内の複数の推論経路をマージする並列デコードシーケンス・ツー・シーケンス・ビジョン言語モデルを提案する。
このモデルは最先端の自己回帰モデルと同等のパフォーマンスを実現するが、推論時間では高速である。
論文 参考訳(メタデータ) (2024-03-04T17:34:59Z) - Non-Autoregressive Diffusion-based Temporal Point Processes for
Continuous-Time Long-Term Event Prediction [8.88485011274486]
本研究では,長期イベント予測のための拡散に基づく非自己回帰時間プロセスモデルを提案する。
事象列上で拡散過程を実行するために,対象事象列とユークリッドベクトル空間の間の双方向マップを開発する。
連続時間における長期イベント予測における最先端手法よりも提案モデルの方が優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2023-11-02T06:52:44Z) - Interacting Diffusion Processes for Event Sequence Forecasting [20.380620709345898]
拡散生成モデルを組み込んだ新しい手法を提案する。
このモデルはシーケンス・ツー・シーケンスの予測を容易にし、過去のイベント・シーケンスに基づいた複数ステップの予測を可能にする。
提案手法は,TPPの長期予測において,最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-26T22:17:25Z) - Continuous-time convolutions model of event sequences [46.3471121117337]
イベントシーケンスは不均一でスパースであり、従来のモデルは不適当である。
我々は、時間とともに一様でない事象の発生を処理するために設計された効率的な畳み込みニューラルネットワークに基づくCOTICを提案する。
COTICは、次のイベント時間とタイプを予測する際に既存のモデルよりも優れており、最も近いライバルの3.714と比較して平均1.5のランクに達している。
論文 参考訳(メタデータ) (2023-02-13T10:34:51Z) - WaveBound: Dynamic Error Bounds for Stable Time Series Forecasting [30.692056599222926]
時系列予測は、現実の応用において高い実用性のために重要な課題となっている。
最近のディープラーニングベースのアプローチは、時系列予測において顕著な成功を収めている。
深層ネットワークはいまだに不安定なトレーニングと過度な適合に悩まされている。
論文 参考訳(メタデータ) (2022-10-25T19:58:02Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Continuous Latent Process Flows [47.267251969492484]
任意の時間スタンプにおける連続時系列ダイナミクスの部分的な観察は多くの分野に存在する。このタイプのデータに連続力学を用いた統計モデルを適用することは、直感的なレベルで有望であるだけでなく、実用的な利点もある。
微分方程式によって駆動される時間依存正規化フローを用いて、連続潜時プロセスを連続可観測プロセスに復号する原則的アーキテクチャである連続潜時プロセスフロー(CLPF)を用いて、これらの課題に取り組む。
我々のアブレーション研究は、不規則な時間グリッド上での様々な推論タスクへの貢献の有効性を実証している。
論文 参考訳(メタデータ) (2021-06-29T17:16:04Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。