論文の概要: Causal Discovery in Multivariate Time Series through Mutual Information Featurization
- arxiv url: http://arxiv.org/abs/2508.01848v1
- Date: Sun, 03 Aug 2025 17:03:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.087172
- Title: Causal Discovery in Multivariate Time Series through Mutual Information Featurization
- Title(参考訳): 相互情報飽和化による多変量時系列の因果発見
- Authors: Gian Marco Paldino, Gianluca Bontempi,
- Abstract要約: 時間的因果関係(TD2C)は、情報理論と統計的記述の豊富なセットから複雑な因果的シグネチャを認識することを学ぶ。
以上の結果から,TD2Cは最先端の性能を達成し,確立された手法を一貫して上回ることを示す。
- 参考スコア(独自算出の注目度): 0.1657441317977376
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Discovering causal relationships in complex multivariate time series is a fundamental scientific challenge. Traditional methods often falter, either by relying on restrictive linear assumptions or on conditional independence tests that become uninformative in the presence of intricate, non-linear dynamics. This paper proposes a new paradigm, shifting from statistical testing to pattern recognition. We hypothesize that a causal link creates a persistent and learnable asymmetry in the flow of information through a system's temporal graph, even when clear conditional independencies are obscured. We introduce Temporal Dependency to Causality (TD2C), a supervised learning framework that operationalizes this hypothesis. TD2C learns to recognize these complex causal signatures from a rich set of information-theoretic and statistical descriptors. Trained exclusively on a diverse collection of synthetic time series, TD2C demonstrates remarkable zero-shot generalization to unseen dynamics and established, realistic benchmarks. Our results show that TD2C achieves state-of-the-art performance, consistently outperforming established methods, particularly in high-dimensional and non-linear settings. By reframing the discovery problem, our work provides a robust and scalable new tool for uncovering causal structures in complex systems.
- Abstract(参考訳): 複雑な多変量時系列における因果関係を明らかにすることは、基本的な科学的課題である。
伝統的な手法は、制限的な線形仮定に依存するか、複雑で非線形な力学の存在下で非形式的になる条件付き独立テストに依存するか、しばしば失敗する。
本稿では,統計的テストからパターン認識へ移行した新しいパラダイムを提案する。
我々は、因果リンクが、明確な条件不依存が曖昧である場合でも、システムの時間グラフを通して情報の流れにおいて永続的で学習可能な非対称性を生じさせると仮定する。
本稿では,この仮説を運用する教師あり学習フレームワークであるTD2Cを紹介する。
TD2Cは、情報理論および統計記述子の豊富なセットからこれらの複雑な因果シグネチャを認識することを学ぶ。
TD2Cは、様々な合成時系列のコレクションに特化して訓練されており、目に見えないダイナミクスや確立された現実的なベンチマークに顕著なゼロショットの一般化を示す。
以上の結果から,TD2Cは従来の手法,特に高次元および非線形設定において,一貫した性能向上を実現していることがわかった。
発見問題を考慮し、我々の研究は複雑なシステムの因果構造を明らかにするための堅牢でスケーラブルな新しいツールを提供する。
関連論文リスト
- Flow-Based Non-stationary Temporal Regime Causal Structure Learning [49.77103348208835]
因果発見のための統合フレームワークであるFANTOMを紹介する。
非定常過程と非ガウス的および異方性雑音を扱う。
同時にレジームの数と対応するインデックスを推測し、各レジームのディレクテッド・アサイクリックグラフを学習する。
論文 参考訳(メタデータ) (2025-06-20T15:12:43Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data [0.42156176975445486]
本稿では,時系列因果ニューラルネットワーク(TS-Causal Neural Network,TS-CausalNN)を提案する。
単純な並列設計に加えて、提案モデルの利点は、データの非定常性と非線形性を自然に扱うことである。
論文 参考訳(メタデータ) (2024-04-01T20:33:29Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
本稿では,DAG(Directed Acyclic Graph)を並列に学習する新しい手法であるCASTORを提案する。
我々は我々の枠組みの中で体制とDAGの識別可能性を確立する。
実験により、CASTORは既存の因果発見モデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2023-11-02T17:26:49Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Path Signature Area-Based Causal Discovery in Coupled Time Series [0.0]
本稿では,2変数間の符号付き領域の大きさの意義を解析するために,信頼度系列の応用を提案する。
このアプローチは、2つの時系列の間に存在する因果関係の信頼性を定義する新しい方法を提供する。
論文 参考訳(メタデータ) (2021-10-23T19:57:22Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。