論文の概要: Enhancement of Quantum Semi-Supervised Learning via Improved Laplacian and Poisson Methods
- arxiv url: http://arxiv.org/abs/2508.02054v1
- Date: Mon, 04 Aug 2025 04:45:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.17762
- Title: Enhancement of Quantum Semi-Supervised Learning via Improved Laplacian and Poisson Methods
- Title(参考訳): 改良されたラプラシアンおよびポアソン法による量子半教師付き学習の促進
- Authors: Hamed Gholipour, Farid Bozorgnia, Hamzeh Mohammadigheymasi, Kailash Hambarde, Javier Mancilla, Hugo Proenca, Joao Neves, Moharram Challenger,
- Abstract要約: グラフに基づく半教師付き学習のための2つの拡張量子モデルを提案する。
ILQSSLとIPQSSLはどちらも、従来の半教師付き学習アルゴリズムよりも一貫して優れていることを示す。
これらの知見は、データ効率の分類の進歩における量子機械学習の役割を支持している。
- 参考スコア(独自算出の注目度): 1.3671687680746285
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper develops a hybrid quantum approach for graph-based semi-supervised learning to enhance performance in scenarios where labeled data is scarce. We introduce two enhanced quantum models, the Improved Laplacian Quantum Semi-Supervised Learning (ILQSSL) and the Improved Poisson Quantum Semi-Supervised Learning (IPQSSL), that incorporate advanced label propagation strategies within variational quantum circuits. These models utilize QR decomposition to embed graph structure directly into quantum states, thereby enabling more effective learning in low-label settings. We validate our methods across four benchmark datasets like Iris, Wine, Heart Disease, and German Credit Card -- and show that both ILQSSL and IPQSSL consistently outperform leading classical semi-supervised learning algorithms, particularly under limited supervision. Beyond standard performance metrics, we examine the effect of circuit depth and qubit count on learning quality by analyzing entanglement entropy and Randomized Benchmarking (RB). Our results suggest that while some level of entanglement improves the model's ability to generalize, increased circuit complexity may introduce noise that undermines performance on current quantum hardware. Overall, the study highlights the potential of quantum-enhanced models for semi-supervised learning, offering practical insights into how quantum circuits can be designed to balance expressivity and stability. These findings support the role of quantum machine learning in advancing data-efficient classification, especially in applications constrained by label availability and hardware limitations.
- Abstract(参考訳): 本稿では,グラフに基づく半教師付き学習のためのハイブリッド量子アプローチを開発し,ラベル付きデータが少ないシナリオにおける性能を向上させる。
改良されたラプラシア量子セミスーパーバイザラーニング(ILQSSL)と改良されたポアソン量子セミスーパーバイザラーニング(IPQSSL)の2つの拡張量子モデルを導入する。
これらのモデルはQR分解を利用してグラフ構造を直接量子状態に埋め込み、低ラベル設定でより効果的な学習を可能にする。
Iris、Wine、Heart Disease、Deutsche Credit Cardといった4つのベンチマークデータセットでメソッドを検証することで、ILQSSLとIPQSSLのどちらも、古典的な半教師付き学習アルゴリズム、特に限定的な監督の下で一貫してパフォーマンスが向上していることを示しています。
回路深度とキュービットカウントが学習の質に及ぼす影響を, 絡み合いのエントロピーとランダム化ベンチマーク(RB)を解析して検討した。
その結果,ある程度の絡み合いによってモデルの一般化能力が向上する一方,回路の複雑化により,現在の量子ハードウェアの性能を損なうノイズが発生する可能性が示唆された。
全体として、この研究は、半教師付き学習のための量子強化モデルの可能性を強調し、量子回路が表現性と安定性のバランスをとるためにどのように設計できるかに関する実践的な洞察を提供する。
これらの知見は、特にラベルの可用性とハードウェアの制限に制約されたアプリケーションにおいて、データ効率の分類の進歩における量子機械学習の役割を支持している。
関連論文リスト
- Unitary Scrambling and Collapse: A Quantum Diffusion Framework for Generative Modeling [5.258882634977828]
画像生成のための最初の完全量子拡散に基づくフレームワークであるQSC-Diffusionを提案する。
逆ノイズ発生のためのパラメータ化量子回路を用いる。
注目すべきは、QSC-Diffusionは複数のデータセット間で競合するFIDスコアを達成することだ。
論文 参考訳(メタデータ) (2025-06-12T11:00:21Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
変分量子回路(VQC)は、量子機械学習のための新しい経路を提供する。
それらの実用的応用は、制約付き線形表現性、最適化課題、量子ハードウェアノイズに対する鋭敏感といった固有の制限によって妨げられている。
この研究は、これらの障害を克服するために設計されたスケーラブルで堅牢なハイブリッド量子古典アーキテクチャであるVQC-MLPNetを導入している。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
ノイズは、信頼できる量子アルゴリズムを達成するための大きな障害である。
本稿では,パラメータ化量子回路分類器のロバスト性を高めるための雑音耐性学習理論とアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-05-24T02:51:34Z) - Quantum parallel information exchange (QPIE) hybrid network with transfer learning [18.43273756128771]
量子機械学習(QML)は、複雑なパターンを明らかにする可能性のある革新的なフレームワークとして登場した。
量子並列情報交換(QPIE)ハイブリッドネットワークを導入する。
量子処理ユニットにパラメータシフトルールを適用する動的勾配選択法を開発した。
論文 参考訳(メタデータ) (2025-04-05T17:25:26Z) - Characterizing Non-Markovian Dynamics of Open Quantum Systems [0.0]
我々はTCLマスター方程式を用いて非マルコフ進化を特徴付ける構造保存手法を開発した。
本稿では,ローレンス・リバモア国立研究所のQuantum Device Integration Testbed (QuDIT) における超伝導量子ビットの実験データを用いた手法について述べる。
これらの知見は、短期量子プロセッサにおける量子制御とエラー軽減に寄与する、オープン量子システムの効率的なモデリング戦略に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-03-28T04:43:24Z) - Quantum autoencoders for image classification [0.0]
量子オートエンコーダ(QAE)は、パラメータチューニングのみに古典的な最適化を利用する。
本研究では,QAEを用いた新しい画像分類手法を提案する。
論文 参考訳(メタデータ) (2025-02-21T07:13:38Z) - A learning agent-based approach to the characterization of open quantum systems [0.0]
我々は,オープンな量子モデル学習エージェント (oQMLA) フレームワークを導入し,Louvillianフォーマリズムによるマルコフ雑音を考慮した。
ハミルトン作用素とジャンプ作用素を同時に学習することにより、oQMLAは独立に系のコヒーレント力学と非コヒーレント力学の両方を捉える。
複雑化のシミュレーションシナリオにおける本実装の有効性を検証し,ハードウェアによる測定誤差に対するロバスト性を示す。
論文 参考訳(メタデータ) (2025-01-09T16:25:17Z) - Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection [3.9554540293311864]
量子機械学習は、環境モニタリング、医療診断、金融モデリングといった様々な応用において有望であることを示している。
重要な課題のひとつは、希少なイベントがスキューデータ分散によって誤って分類される、不均衡なデータセットを扱うことだ。
本稿では,QBNを用いて衛星由来の不均衡データセットを分類し,非スパイル領域とオイルスパイル'を区別するベイズ的手法を提案する。
論文 参考訳(メタデータ) (2024-12-24T15:44:26Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Strategic Data Re-Uploads: A Pathway to Improved Quantum Classification Data Re-Uploading Strategies for Improved Quantum Classifier Performance [0.0]
古典情報を複数回量子状態に再アップロードすると、量子分類器の精度が向上する。
線形分類パターン(LCP)と非線形分類パターン(NLCP)の2つの分類パターンに対するアプローチを実証する。
論文 参考訳(メタデータ) (2024-05-15T14:28:00Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - When BERT Meets Quantum Temporal Convolution Learning for Text
Classification in Heterogeneous Computing [75.75419308975746]
本研究は,変分量子回路に基づく垂直連合学習アーキテクチャを提案し,テキスト分類のための量子化事前学習BERTモデルの競争性能を実証する。
目的分類実験により,提案したBERT-QTCモデルにより,SnipsおよびATIS音声言語データセットの競合実験結果が得られた。
論文 参考訳(メタデータ) (2022-02-17T09:55:21Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。