Semi-Supervised Dual-Threshold Contrastive Learning for Ultrasound Image Classification and Segmentation
- URL: http://arxiv.org/abs/2508.02265v1
- Date: Mon, 04 Aug 2025 10:15:53 GMT
- Title: Semi-Supervised Dual-Threshold Contrastive Learning for Ultrasound Image Classification and Segmentation
- Authors: Peng Zhang, Zhihui Lai, Heng Kong,
- Abstract summary: We propose a novel semi-supervised dual-threshold contrastive learning strategy for ultrasound image classification and segmentation, named Hermes.<n>Specifically, an inter-task attention and saliency module is also developed to facilitate information sharing between the segmentation and classification tasks.
- Score: 21.989292901973567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Confidence-based pseudo-label selection usually generates overly confident yet incorrect predictions, due to the early misleadingness of model and overfitting inaccurate pseudo-labels in the learning process, which heavily degrades the performance of semi-supervised contrastive learning. Moreover, segmentation and classification tasks are treated independently and the affinity fails to be fully explored. To address these issues, we propose a novel semi-supervised dual-threshold contrastive learning strategy for ultrasound image classification and segmentation, named Hermes. This strategy combines the strengths of contrastive learning with semi-supervised learning, where the pseudo-labels assist contrastive learning by providing additional guidance. Specifically, an inter-task attention and saliency module is also developed to facilitate information sharing between the segmentation and classification tasks. Furthermore, an inter-task consistency learning strategy is designed to align tumor features across both tasks, avoiding negative transfer for reducing features discrepancy. To solve the lack of publicly available ultrasound datasets, we have collected the SZ-TUS dataset, a thyroid ultrasound image dataset. Extensive experiments on two public ultrasound datasets and one private dataset demonstrate that Hermes consistently outperforms several state-of-the-art methods across various semi-supervised settings.
Related papers
- HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation [2.964206587462833]
A novel semi-supervised segmentation framework, called HDC, is proposed incorporating adaptive consistency learning with a single-teacher architecture.<n>The framework introduces a hierarchical distillation mechanism with two objectives: Correlation Guidance Loss for aligning feature representations and Mutual Information Loss for stabilizing noisy student learning.
arXiv Detail & Related papers (2025-04-14T04:52:24Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.<n>Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.<n>We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Deep Semi-supervised Learning with Double-Contrast of Features and
Semantics [2.2230089845369094]
This paper proposes an end-to-end deep semi-supervised learning double contrast of semantic and feature.
We leverage information theory to explain the rationality of double contrast of semantics and features.
arXiv Detail & Related papers (2022-11-28T09:08:19Z) - Consistency-Based Semi-supervised Evidential Active Learning for
Diagnostic Radiograph Classification [2.3545156585418328]
We introduce a novel Consistency-based Semi-supervised Evidential Active Learning framework (CSEAL)
We leverage predictive uncertainty based on theories of evidence and subjective logic to develop an end-to-end integrated approach.
Our approach can substantially improve accuracy on rarer abnormalities with fewer labelled samples.
arXiv Detail & Related papers (2022-09-05T09:28:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
We propose a novel uncertainty-guided mutual consistency learning framework for medical image segmentation.
It integrates intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.
Our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
arXiv Detail & Related papers (2021-12-05T08:19:41Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Deep Semi-supervised Metric Learning with Dual Alignment for Cervical
Cancer Cell Detection [49.78612417406883]
We propose a novel semi-supervised deep metric learning method for cervical cancer cell detection.
Our model learns an embedding metric space and conducts dual alignment of semantic features on both the proposal and prototype levels.
We construct a large-scale dataset for semi-supervised cervical cancer cell detection for the first time, consisting of 240,860 cervical cell images.
arXiv Detail & Related papers (2021-04-07T17:11:27Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.