論文の概要: A Novel Sliced Fused Gromov-Wasserstein Distance
- arxiv url: http://arxiv.org/abs/2508.02364v1
- Date: Mon, 04 Aug 2025 12:51:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.336829
- Title: A Novel Sliced Fused Gromov-Wasserstein Distance
- Title(参考訳): 新しいスライスしたGromov-Wasserstein距離
- Authors: Moritz Piening, Robert Beinert,
- Abstract要約: 本稿では,FGWのスライスにより,距離に留まり,距離を許容しながら,数値的な労力を大幅に削減できることを示す。
また、FGW とジオメトリ GW を束縛した空間に対する新しい擬似測度が、元の GW や FGW プログラムよりも頑健であることを示す。
- 参考スコア(独自算出の注目度): 1.534667887016089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Gromov--Wasserstein (GW) distance and its fused extension (FGW) are powerful tools for comparing heterogeneous data. Their computation is, however, challenging since both distances are based on non-convex, quadratic optimal transport (OT) problems. Leveraging 1D OT, a sliced version of GW has been proposed to lower the computational burden. Unfortunately, this sliced version is restricted to Euclidean geometry and loses invariance to isometries, strongly limiting its application in practice. To overcome these issues, we propose a novel slicing technique for GW as well as for FGW that is based on an appropriate lower bound, hierarchical OT, and suitable quadrature rules for the underlying 1D OT problems. Our novel sliced FGW significantly reduces the numerical effort while remaining invariant to isometric transformations and allowing the comparison of arbitrary geometries. We show that our new distance actually defines a pseudo-metric for structured spaces that bounds FGW from below and study its interpolation properties between sliced Wasserstein and GW. Since we avoid the underlying quadratic program, our sliced distance is numerically more robust and reliable than the original GW and FGW distance; especially in the context of shape retrieval and graph isomorphism testing.
- Abstract(参考訳): Gromov-Wasserstein(GW)距離とその融合拡張(FGW)は異種データを比較する強力なツールである。
しかし、どちらの距離も非凸2次輸送(OT)問題に基づいているため、計算は困難である。
1D OTを活用することで、計算負担を軽減するため、GWのスライスバージョンが提案されている。
残念なことに、このスライスされたバージョンはユークリッド幾何学に制限され、イソメトリーへの不変性を失い、実際にはその適用を強く制限する。
これらの課題を克服するため、GWとFGWのための新しいスライシング手法を提案し、基礎となる1D OT問題に対する適切な下界、階層OT、および適切な二次規則に基づく。
新たなFGWは等尺変換に不変でありながら数値的な労力を大幅に削減し,任意の測地との比較を可能にした。
我々の新しい距離は、FGWを下から有界な構造空間に対して実際に擬距離を定義することを示し、スライスされたワッサーシュタインとGWの間の補間特性を研究する。
基礎となる二次プログラムを避けるため、スライスされた距離は元のGWやFGWよりも数値的に堅牢で信頼性が高い。
関連論文リスト
- Pave Your Own Path: Graph Gradual Domain Adaptation on Fused Gromov-Wasserstein Geodesics [59.07903030446756]
グラフニューラルネットワークは、グラフ上の分散シフトに対して非常に脆弱である。
非IIDグラフデータのための最初のフレームワークであるGadgetを提示する。
ガジェットは既存のグラフDAメソッドとシームレスに統合して、グラフ上の大きなシフトを処理することができる。
論文 参考訳(メタデータ) (2025-05-19T05:03:58Z) - Metric properties of partial and robust Gromov-Wasserstein distances [3.9485589956945204]
グロモフ=ワッサーシュタイン距離(Gromov-Wasserstein distance, GW)は、最適な輸送のアイデアに基づいて、メトリクスの族を定義する。
GW距離は本質的に外れ音に敏感であり、部分的マッチングに対応できない。
我々の新しい距離は真の測度を定義し、それらがGW距離と同じ位相を誘導し、摂動にさらなる堅牢性をもたらすことを示す。
論文 参考訳(メタデータ) (2024-11-04T15:53:45Z) - Linear Partial Gromov-Wasserstein Embedding [8.23887869467319]
Gromov-Wasserstein(GW)問題は、機械学習とデータサイエンスコミュニティへの関心が高まっている。
PGW問題に対する線形化埋め込み手法であるGromov-Wasserstein埋め込みを提案する。
古典的 OT 問題に対する線形化手法と同様に、LPGW が計量測度空間の有効な計量を定義することを証明している。
論文 参考訳(メタデータ) (2024-10-22T03:54:52Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - Bridging Discrete and Backpropagation: Straight-Through and Beyond [62.46558842476455]
本稿では,離散潜在変数の生成に関わるパラメータの勾配を近似する新しい手法を提案する。
本稿では,Hunの手法とODEを解くための2次数値法を統合することで,2次精度を実現するReinMaxを提案する。
論文 参考訳(メタデータ) (2023-04-17T20:59:49Z) - Outlier-Robust Gromov-Wasserstein for Graph Data [31.895380224961464]
我々は、Gromov-Wasserstein (GW) 距離のRGWと呼ばれる新しい頑健なバージョンを導入する。
RGWは、クルバック・リーバーの発散に基づくあいまいさ集合の中で楽観的に摂動する限界制約を特徴とする。
サブグラフマッチングや部分形状対応などの実世界のグラフ学習におけるRGWの有効性を示す。
論文 参考訳(メタデータ) (2023-02-09T12:57:29Z) - Pseudonorm Approachability and Applications to Regret Minimization [73.54127663296906]
我々は、高次元 $ell_infty$-approachability 問題を、低次元の擬ノルムアプローチ可能性問題に変換する。
我々は、$ell$や他のノルムに対するアプローチ可能性に関する以前の研究に類似した疑似ノルムアプローチ可能性のアルゴリズム理論を開発する。
論文 参考訳(メタデータ) (2023-02-03T03:19:14Z) - Efficient Approximation of Gromov-Wasserstein Distance using Importance
Sparsification [34.865115235547286]
本稿では,Gromov-Wasserstein距離を効率的に近似するために,Spar-GWと呼ばれる新しい重要空間分割法を提案する。
Spar-GW法は任意の地価でGW距離に適用可能であることを示す。
さらに、この方法は、エントロピーGW距離、融合GW距離、不均衡GW距離を含むGW距離の変種を近似するために拡張することができる。
論文 参考訳(メタデータ) (2022-05-26T18:30:40Z) - Orthogonal Gromov-Wasserstein Discrepancy with Efficient Lower Bound [11.086440815804226]
Gromov-Wasserstein (GW) は、最適な輸送データセットに基づいて、構造化されたデータ間のノードグラフを定式化する。
本稿では,代入問題との関係から着想を得て,GWの代理としてGromov-Wasserstein離散性を提案する。
論文 参考訳(メタデータ) (2022-05-12T02:10:56Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
射影ロバスト(PR)OTは、2つの測度の間のOTコストを最大化するために、射影可能な$k$次元部分空間を選択する。
私たちの最初の貢献は、PRワッサーシュタイン距離のいくつかの基本的な統計的性質を確立することである。
次に、部分空間を最適化するのではなく平均化することにより、PRW距離の代替として積分PRワッサーシュタイン距離(IPRW)を提案する。
論文 参考訳(メタデータ) (2020-06-22T14:35:33Z) - Preventing Posterior Collapse with Levenshtein Variational Autoencoder [61.30283661804425]
我々は,エビデンス・ロー・バウンド(ELBO)を最適化し,後部崩壊を防止できる新しい目的に置き換えることを提案する。
本稿では,Levenstein VAEが後方崩壊防止のための代替手法よりも,より情報的な潜伏表現を生成することを示す。
論文 参考訳(メタデータ) (2020-04-30T13:27:26Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
本稿では, アンカー・エナジー (AE) とアンカー・ワッサースタイン (AW) 距離を紹介する。
我々の主な貢献は、素案実装が立方体となる対数四重項時間でAEを正確に計算するスイープラインアルゴリズムを提案することである。
AE と AW は,一般的な GW 近似の計算コストのごく一部において,様々な実験環境において良好に動作することを示す。
論文 参考訳(メタデータ) (2020-02-05T03:09:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。