Quantum Convolutional Neural Network with Nonlinear Effects and Barren Plateau Mitigation
- URL: http://arxiv.org/abs/2508.02459v1
- Date: Mon, 04 Aug 2025 14:26:48 GMT
- Title: Quantum Convolutional Neural Network with Nonlinear Effects and Barren Plateau Mitigation
- Authors: Pei-Kun Yang,
- Abstract summary: Quantum neural networks (QNNs) leverage quantum entanglement and superposition to enable large-scale parallel linear computation.<n>However, their practical deployment is hampered by the lack of intrinsic nonlinear operations and the barren plateau phenomenon.<n>We propose a quantum neural convolutional network (QCNN) architecture that simultaneously addresses both issues.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum neural networks (QNNs) leverage quantum entanglement and superposition to enable large-scale parallel linear computation, offering a potential solution to the scalability limits of classical deep learning. However, their practical deployment is hampered by two key challenges: the lack of intrinsic nonlinear operations and the barren plateau phenomenon. We propose a quantum convolutional neural network (QCNN) architecture that simultaneously addresses both issues. Nonlinear effects are introduced via orthonormal basis expansions of power series, while barren plateaus are mitigated by directly parameterizing unitary matrices rather than stacking multiple parameterized gates. Our design further incorporates quantum analogs of convolutional kernels and strides for scalable circuit construction. Experiments on MNIST and Fashion-MNIST datasets achieve 99.0% and 88.0% test accuracy, respectively. Consistency between PyTorch-based matrix simulation and Qiskit-based quantum circuit simulation validates the physical fidelity of the model. These results demonstrate a flexible and effective quantum architecture that faithfully integrates classical convolutional mechanisms into a quantum framework, paving the way for practical and expressive QNNs.
Related papers
- Quantum Recurrent Embedding Neural Network [11.54075064463256]
We propose a quantum recurrent embedding neural network (QRENN) inspired by fast-track information pathways in ResNet.<n>We provide a rigorous proof of the trainability of QRENN circuits, demonstrating that this deep quantum neural network can avoid barren plateaus.<n>Our results highlight the power of recurrent data embedding in quantum neural networks and the potential for scalable quantum supervised learning.
arXiv Detail & Related papers (2025-06-16T07:50:31Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation [4.358861563008207]
Quantum neural networks (QNNs) have shown promise both empirically and theoretically.<n> Hardware imperfections and limited access to quantum devices pose practical challenges.<n>We propose an automated solution using differentiable optimization.
arXiv Detail & Related papers (2025-05-13T19:01:08Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum Leaky Integrate-and-Fire Spiking Neuron and Network [0.0]
We introduce a new software model for quantum neuromorphic computing.
We use these neurons as building blocks in the construction of a quantum spiking neural network (QSNN) and a quantum spiking convolutional neural network (QSCNN)
arXiv Detail & Related papers (2024-07-23T11:38:06Z) - Training-efficient density quantum machine learning [2.918930150557355]
We introduce density quantum neural networks, a model family that prepares mixtures of trainable unitaries.<n>This framework balances expressivity and efficient trainability, especially on quantum hardware.
arXiv Detail & Related papers (2024-05-30T16:40:28Z) - Information-driven Nonlinear Quantum Neuron [0.0]
In this study, a hardware-efficient quantum neural network operating as an open quantum system is proposed.
We show that this dissipative model based on repeated interactions, which allows for easy parametrization of input quantum information, exhibits differentiable, non-linear activation functions.
arXiv Detail & Related papers (2023-07-18T07:12:08Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Introducing Non-Linearity into Quantum Generative Models [0.0]
We introduce a model that adds non-linear activations via a neural network structure onto the standard Born Machine framework.
We compare our non-linear QNBM to the linear Quantum Circuit Born Machine.
We show that while both models can easily learn a trivial uniform probability distribution, the QNBM achieves an almost 3x smaller error rate than a QCBM.
arXiv Detail & Related papers (2022-05-28T18:59:49Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.