論文の概要: An Efficient Continuous-Time MILP for Integrated Aircraft Hangar Scheduling and Layout
- arxiv url: http://arxiv.org/abs/2508.02640v2
- Date: Sun, 07 Sep 2025 16:22:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.217251
- Title: An Efficient Continuous-Time MILP for Integrated Aircraft Hangar Scheduling and Layout
- Title(参考訳): 航空機用ハンガースケジューリングとレイアウトのための高効率連続時間MILP
- Authors: Shayan Farhang Pazhooh, Hossein Shams Shemirani,
- Abstract要約: 航空機の配置とタイミングを協調的に最適化する連続時間混合整数線形計算プログラムを提案する。
ある研究では、このモデルを建設的秩序のスピードアップに対してベンチマークし、大規模な性能を探索し、時間的混雑に対する感度を定量化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient management of aircraft MRO hangars requires the integration of spatial layout with time-continuous scheduling to minimize operational costs. We propose a continuous-time mixed-integer linear program that jointly optimizes aircraft placement and timing, overcoming the scalability limits of prior formulations. A comprehensive study benchmarks the model against a constructive heuristic, probes large-scale performance, and quantifies its sensitivity to temporal congestion. The model achieves orders-of-magnitude speedups on benchmarks from the literature, solving a long-standing congested instance in 0.11 seconds, and finds proven optimal solutions for instances with up to 40 aircraft. Within a one-hour limit for large-scale problems, the model finds solutions with small optimality gaps for instances up to 80 aircraft and provides strong bounds for problems with up to 160 aircraft. Optimized plans consistently increase hangar throughput (e.g., +33% serviced aircraft vs. a heuristic on instance RND-N030-I03), leading to lower delay penalties and higher asset utilization. These findings establish that exact optimization has become computationally viable for large-scale hangar planning, providing a validated tool that balances solution quality and computation time for strategic and operational decisions.
- Abstract(参考訳): 航空機のMRO格納庫の効率的な管理には、運用コストを最小限に抑えるため、空間配置と時間連続スケジューリングを統合する必要がある。
本稿では,航空機の配置とタイミングを協調的に最適化し,事前定式化のスケーラビリティ限界を克服する連続時間混合整数線形プログラムを提案する。
包括的な研究は、モデルを建設的ヒューリスティックに対してベンチマークし、大規模なパフォーマンスを探索し、時間的混雑に対する感度を定量化する。
このモデルは、文献から得られたベンチマークのオーダー・オブ・マグニチュード・スピードアップを達成し、長期間の混雑したインスタンスを0.11秒で解決し、最大40機までの航空機のインスタンスに最適な解を求める。
大規模な問題に対する1時間以内の制限の中で、モデルは最大80機までの航空機に対して小さな最適性ギャップを持つ解を見つけ、最大160機までの航空機に対する問題に対する強い境界を提供する。
最適化された計画は、ハンガーのスループットを継続的に増加させ(例えば、RND-N030-I03では、+33%のサービス航空機がヒューリスティックである)、遅延の少ないペナルティと高い資産利用をもたらす。
これらの結果から,大規模ハンガー計画において,正確な最適化が計算可能であることが確認された。
関連論文リスト
- Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update [60.414548453838506]
非線形リンク関数を組み込んで古典線形モデルを拡張したコンテキスト型多武装バンディットフレームワークである一般化線形バンディット問題(GLB)について検討する。
GLBは現実世界のシナリオに広く適用できるが、その非線形性は計算効率と統計効率の両方を達成する上で大きな課題をもたらす。
本稿では,$mathcalO(1)$時間と1ラウンドあたりの空間複雑度をほぼ最適に再現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-07-16T02:24:21Z) - Opportunistic Collaborative Planning with Large Vision Model Guided Control and Joint Query-Service Optimization [74.92515821144484]
オープンなシナリオで自動運転車をナビゲートすることは、目に見えない物体を扱うのが難しいため、課題である。
既存のソリューションは、一般化に苦しむ小さなモデルか、リソース集約的な大きなモデルに依存している。
本稿では,効率的なローカルモデルと強力なクラウドモデルをシームレスに統合するオポチュニティ協調計画(OCP)を提案する。
論文 参考訳(メタデータ) (2025-04-25T04:07:21Z) - DiffPO: Diffusion-styled Preference Optimization for Efficient Inference-Time Alignment of Large Language Models [50.32663816994459]
拡散型優先度最適化(Diffusion-styled Preference Optimization: モデル)は、LLMを人間と整合させるための効率的でポリシーに依存しないソリューションを提供する。
modelavoidはトークンレベルの生成に関連する時間遅延をモデル化する。
AlpacaEval 2, MT-bench, HH-RLHFの実験により, 種々の環境におけるアライメント性能が良好であることが示された。
論文 参考訳(メタデータ) (2025-03-06T09:21:54Z) - A Graph-Enhanced Deep-Reinforcement Learning Framework for the Aircraft Landing Problem [0.0]
航空機着陸問題(英: Aircraft Landing Problem、ALP)は、航空機の輸送と管理において難しい問題の一つである。
本稿では,グラフニューラルネットワークとアクター批判アーキテクチャを組み合わせてALPに対処する,新しい深層強化学習フレームワークを提案する。
その結果、学習アルゴリズムは異なる問題集合上でテストでき、その結果は研究アルゴリズムの運用と競合することを示した。
論文 参考訳(メタデータ) (2025-02-18T08:02:17Z) - A Hybrid Tabu Scatter Search Algorithm for Simulation-Based Optimization of Multi-Objective Runway Operations Scheduling [0.0]
Dissertationは、滑走路運用スケジューリングのためのシミュレーションベースの最適化(SbO)アプローチを提案することで、航空交通フロー管理の課題に対処する。
目的は、遅延、燃料消費、環境への影響を最小限に抑えつつ、空港の容量利用を最適化することである。
提案するSbOフレームワークは,滑走路条件を扱う離散イベントシミュレーションモデルと,最適解を特定するためのハイブリッドタブ・散乱探索アルゴリズムを統合した。
論文 参考訳(メタデータ) (2025-02-08T14:42:05Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
拡散モデルはマルチラウンド・デノナイジングの時間ステップに依存している。
3つの戦略を含む新しい量子化フレームワークを導入する。
このフレームワークは時間情報のほとんどを保存し、高品質なエンドツーエンド生成を保証する。
論文 参考訳(メタデータ) (2024-07-28T17:46:15Z) - A Graph-based Adversarial Imitation Learning Framework for Reliable & Realtime Fleet Scheduling in Urban Air Mobility [5.19664437943693]
本稿では,艦隊スケジューリング問題の包括的最適化について述べる。
また、代替ソリューションのアプローチの必要性も認識している。
新しい模倣アプローチは、目に見えない最悪のシナリオにおいて、パフォーマンスと顕著な改善を実現する。
論文 参考訳(メタデータ) (2024-07-16T18:51:24Z) - OTClean: Data Cleaning for Conditional Independence Violations using
Optimal Transport [51.6416022358349]
sysは、条件付き独立性(CI)制約下でのデータ修復に最適な輸送理論を利用するフレームワークである。
我々はSinkhornの行列スケーリングアルゴリズムにインスパイアされた反復アルゴリズムを開発し、高次元および大規模データを効率的に処理する。
論文 参考訳(メタデータ) (2024-03-04T18:23:55Z) - A Hierarchical Temporal Planning-Based Approach for Dynamic Hoist
Scheduling Problems [11.66506213335498]
ホイストスケジューリングは、自律デバイスの開発で産業応用の電気めっきのボトルネックとなっている。
適応型PDDLの形で新しい時間計画問題としてホイストスケジューリング問題を定式化する。
この問題に対するソリューションメソッドの評価に使用できる実生活ベンチマークインスタンスのコレクションを提供する。
論文 参考訳(メタデータ) (2022-12-11T05:30:44Z) - Efficient Temporal Piecewise-Linear Numeric Planning with Lazy
Consistency Checking [4.834203844100679]
本稿では,プランナがLP整合性チェックを可能な限り遅延的に計算できる手法を提案する。
また,時間依存ゴールチェックをより選択的に行うアルゴリズムを提案する。
結果として得られるプランナーは、より効率的であるだけでなく、最先端の時間数値とハイブリッドプランナーよりも優れています。
論文 参考訳(メタデータ) (2021-05-21T07:36:54Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。