論文の概要: Hybrid Reinforcement Learning and Search for Flight Trajectory Planning
- arxiv url: http://arxiv.org/abs/2509.04100v1
- Date: Thu, 04 Sep 2025 11:01:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:10.137616
- Title: Hybrid Reinforcement Learning and Search for Flight Trajectory Planning
- Title(参考訳): ハイブリッド強化学習と飛行軌道計画の探索
- Authors: Alberto Luise, Michele Lombardi, Florent Teichteil Koenigsbuch,
- Abstract要約: 本稿では,RL(Reinforcement Learning)と検索ベースパスプランナを組み合わせることで,航空会社の飛行経路の最適化を高速化する。
基本的な考え方は、RLエージェントをトレーニングして、位置と大気のデータに基づいて、最適に近い経路を事前計算し、実行時にそれらを使用して、基礎となる経路計画の解決を制約することである。
この手法は,探索空間のサイズを効果的に削減し,経路最適化を大幅に高速化する。
- 参考スコア(独自算出の注目度): 6.651730814910398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the combination of Reinforcement Learning (RL) and search-based path planners to speed up the optimization of flight paths for airliners, where in case of emergency a fast route re-calculation can be crucial. The fundamental idea is to train an RL Agent to pre-compute near-optimal paths based on location and atmospheric data and use those at runtime to constrain the underlying path planning solver and find a solution within a certain distance from the initial guess. The approach effectively reduces the size of the solver's search space, significantly speeding up route optimization. Although global optimality is not guaranteed, empirical results conducted with Airbus aircraft's performance models show that fuel consumption remains nearly identical to that of an unconstrained solver, with deviations typically within 1%. At the same time, computation speed can be improved by up to 50% as compared to using a conventional solver alone.
- Abstract(参考訳): 本稿では,緊急時に高速経路再計算が重要となる航空会社の飛行経路の最適化を高速化するために,RLと検索ベースパスプランナーの組み合わせについて検討する。
基本的な考え方は、RLエージェントを、位置と大気のデータに基づいて最適に近い経路を事前計算するように訓練し、実行時にそれらを使用して、基礎となる経路計画解法を制約し、初期推定から一定の距離以内に解を見つけることである。
この手法は,探索空間のサイズを効果的に削減し,経路最適化を大幅に高速化する。
グローバルな最適性は保証されていないが、エアバスの航空機の性能モデルによる実証実験の結果、燃料消費量は制限されていない解法とほぼ同じであり、通常は1%以内である。
また,従来の解法に比べて計算速度を最大50%向上させることができる。
関連論文リスト
- Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
車両ルーティング問題(VRP)は、トラベリングセールスパーソン問題の延長であり、進化的最適化における基本的なNPハードチャレンジである。
遺伝的アルゴリズムによってさらに最適化された初期解を迅速に生成するために、強化学習エージェント(事前インスタンスで訓練された)を使用した新しい最適化フレームワークを導入する。
例えば、EARLIは1秒以内に500カ所の車両ルーティングを処理し、同じソリューション品質の現在のソルバよりも10倍高速で、リアルタイムやインタラクティブなルーティングのようなアプリケーションを可能にする。
論文 参考訳(メタデータ) (2025-04-08T15:21:01Z) - A Graph-Enhanced Deep-Reinforcement Learning Framework for the Aircraft Landing Problem [0.0]
航空機着陸問題(英: Aircraft Landing Problem、ALP)は、航空機の輸送と管理において難しい問題の一つである。
本稿では,グラフニューラルネットワークとアクター批判アーキテクチャを組み合わせてALPに対処する,新しい深層強化学習フレームワークを提案する。
その結果、学習アルゴリズムは異なる問題集合上でテストでき、その結果は研究アルゴリズムの運用と競合することを示した。
論文 参考訳(メタデータ) (2025-02-18T08:02:17Z) - Evaluation of Local Planner-Based Stanley Control in Autonomous RC Car Racing Series [0.0]
本稿では,自動RCカーレースの制御手法を提案する。
実際のLiDARポイントクラウド上では、ローカルパスのみを計画している。
1/10サイズのRCカーでテストし、ベースソリューションから実際のF110thレースにおける最適設定までのチューニング手順を示す。
論文 参考訳(メタデータ) (2024-08-27T15:50:31Z) - LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
経路計画はロボット工学と自律航法における基本的な科学的問題である。
A*やその変種のような伝統的なアルゴリズムは、パスの妥当性を保証することができるが、状態空間が大きくなるにつれて、計算とメモリの非効率が著しく低下する。
本稿では, A* の正確なパスフィニング能力と LLM のグローバルな推論能力とを相乗的に組み合わせた LLM ベースの経路計画法を提案する。
このハイブリッドアプローチは、特に大規模シナリオにおいて、パス妥当性の完全性を維持しながら、時間と空間の複雑さの観点からパスフィニング効率を向上させることを目的としている。
論文 参考訳(メタデータ) (2024-06-20T01:24:30Z) - Enhancing Column Generation by Reinforcement Learning-Based
Hyper-Heuristic for Vehicle Routing and Scheduling Problems [9.203492057735074]
カラム生成(CG)は変数を動的に生成することで大規模問題を解決する重要な手法である。
CGの性能を高めるために,RLHHと呼ばれる強化学習に基づく超ヒューリスティックフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-15T00:05:50Z) - Time-Optimal Planning for Quadrotor Waypoint Flight [50.016821506107455]
立方体の作動限界における時間-最適軌道の計画は未解決の問題である。
四重項のアクチュエータポテンシャルをフル活用する解を提案する。
我々は、世界最大規模のモーションキャプチャーシステムにおいて、実世界の飛行における我々の方法を検証する。
論文 参考訳(メタデータ) (2021-08-10T09:26:43Z) - Autonomous Drone Racing with Deep Reinforcement Learning [39.757652701917166]
ドローンレースのような多くのロボットタスクにおいて、ゴールはできるだけ速くコースポイントを移動することである。
重要な課題は、事前に通過するウェイポイントの完全な知識を想定して解決される最小時間軌道を計画することです。
本研究では,クワッドロータの最小時間軌道生成法を提案する。
論文 参考訳(メタデータ) (2021-03-15T18:05:49Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
複数の目的地間でリアルタイムに個別の避難経路を生成する屋内避難のための渋滞対応ルーティングソリューションを提案する。
建物内の混雑分布をモデル化するために、ユーザエンド拡張現実(AR)デバイスから避難者の位置を集約して、オンザフライで取得した人口密度マップを用いる。
論文 参考訳(メタデータ) (2020-04-25T22:54:35Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。