論文の概要: PMGS: Reconstruction of Projectile Motion across Large Spatiotemporal Spans via 3D Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2508.02660v1
- Date: Mon, 04 Aug 2025 17:49:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.463963
- Title: PMGS: Reconstruction of Projectile Motion across Large Spatiotemporal Spans via 3D Gaussian Splatting
- Title(参考訳): PMGS : 3次元ガウススプラッティングによる時空間空間における投射運動の再構築
- Authors: Yijun Xu, Jingrui Zhang, Yuhan Chen, Dingwen Wang, Lei Yu, Chu He,
- Abstract要約: 本研究では,3次元ガウス散乱によるプロジェクタイルの再構成に着目したPMGSを提案する。
本稿では,ニュートン力学を橋渡し,ポーズ推定を行う加速度制約を導入し,運動状態に基づいて学習率を適応的にスケジュールする動的シミュレート変形戦略を設計する。
- 参考スコア(独自算出の注目度): 9.314869696272297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling complex rigid motion across large spatiotemporal spans remains an unresolved challenge in dynamic reconstruction. Existing paradigms are mainly confined to short-term, small-scale deformation and offer limited consideration for physical consistency. This study proposes PMGS, focusing on reconstructing Projectile Motion via 3D Gaussian Splatting. The workflow comprises two stages: 1) Target Modeling: achieving object-centralized reconstruction through dynamic scene decomposition and an improved point density control; 2) Motion Recovery: restoring full motion sequences by learning per-frame SE(3) poses. We introduce an acceleration consistency constraint to bridge Newtonian mechanics and pose estimation, and design a dynamic simulated annealing strategy that adaptively schedules learning rates based on motion states. Futhermore, we devise a Kalman fusion scheme to optimize error accumulation from multi-source observations to mitigate disturbances. Experiments show PMGS's superior performance in reconstructing high-speed nonlinear rigid motion compared to mainstream dynamic methods.
- Abstract(参考訳): 大きな時空間にわたって複雑な剛性運動をモデル化することは、動的再構成において未解決の課題である。
既存のパラダイムは、主に短期的、小規模な変形に限られており、物理的整合性に対する限定的な考慮を提供する。
本研究では,3次元ガウス平滑化による投射運動の再構成に着目したPMGSを提案する。
ワークフローには2つのステージがある。
1)目標モデリング:動的シーン分解と点密度制御の改善によるオブジェクト分散再構築の実現
2) 動作回復: フレームごとのSE(3)ポーズを学習して全動作シーケンスを復元する。
本稿では,ニュートン力学を橋渡し,ポーズ推定を行うための加速度整合性制約を導入し,運動状態に基づいて学習率を適応的にスケジュールする動的擬似アニーリング戦略を設計する。
さらに,マルチソース観測による誤差蓄積を最適化し,障害を軽減するために,カルマン融合方式を考案した。
実験の結果,PMGSの高速非線形剛性運動の再現性能は,主流の動的手法に比べて優れていた。
関連論文リスト
- Laplacian Analysis Meets Dynamics Modelling: Gaussian Splatting for 4D Reconstruction [9.911802466255653]
本稿では,ハイブリッドな明示的関数を持つ動的3DGSフレームワークを提案する。
本手法は, 複雑な動的シーンを再構築する際の最先端性能を実証し, 再現精度を向上する。
論文 参考訳(メタデータ) (2025-08-07T01:39:29Z) - HAIF-GS: Hierarchical and Induced Flow-Guided Gaussian Splatting for Dynamic Scene [11.906835503107189]
本稿では,スパースアンカー駆動変形による構造的・一貫した動的モデリングを実現する統合フレームワークHAIF-GSを提案する。
HAIF-GSは, レンダリング品質, 時間的コヒーレンス, 再構成効率において, 従来の動的3DGS法よりも有意に優れていた。
論文 参考訳(メタデータ) (2025-06-11T08:45:08Z) - ReCoM: Realistic Co-Speech Motion Generation with Recurrent Embedded Transformer [58.49950218437718]
音声に同期した高忠実で一般化可能な人体動作を生成するための効率的なフレームワークであるReCoMを提案する。
Recurrent Embedded Transformer (RET)は、動的埋め込み正規化(DER)をViT(Vit)コアアーキテクチャに統合する。
モデルロバスト性を高めるため,ノイズ抵抗とクロスドメイン一般化の二重性を持つモデルに,提案したDER戦略を取り入れた。
論文 参考訳(メタデータ) (2025-03-27T16:39:40Z) - EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation [59.33052312107478]
イベントカメラは、シーン変化に対する連続的適応ピクセルレベル応答による3次元モーション推定の可能性を提供する。
本稿では,イベント誘導パラメトリック曲線を用いた一様軌道をモデル化するイベントベースフレームワークであるEMoveについて述べる。
動作表現には,事象誘導下での空間的特徴と時間的特徴を融合する密度認識適応機構を導入する。
最終3次元運動推定は、パラメトリック軌道、流れ、深度運動場の多時間サンプリングによって達成される。
論文 参考訳(メタデータ) (2025-03-14T13:15:54Z) - CoMoGaussian: Continuous Motion-Aware Gaussian Splatting from Motion-Blurred Images [19.08403715388913]
3D Gaussian Splattingは高品質のノベルビューレンダリングのために注目されている。
重要な問題は、露出中の動きによるカメラの動きのぼかしであり、正確な3Dシーンの復元を妨げる。
動きブル画像から正確な3Dシーンを再構成する連続運動対応ガウス版CoMoGaussianを提案する。
論文 参考訳(メタデータ) (2025-03-07T11:18:43Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
本稿では,高時間分解能連続運動データと動的シーン再構成のための変形可能な3D-GSを併用したイベントカメラについて紹介する。
本稿では、3次元再構成としきい値モデリングの両方を大幅に改善する相互強化プロセスを作成するGS-Thresholdジョイントモデリング戦略を提案する。
提案手法は,合成および実世界の動的シーンを用いた最初のイベント包摂型4Dベンチマークであり,その上で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-11-25T08:23:38Z) - Differentiable Motion Manifold Primitives for Reactive Motion Generation under Kinodynamic Constraints [5.982922468400902]
Differentiable Motion Manifold Primitives (DMMP)は、連続時間で微分可能な軌道を符号化し生成する新しいニューラルネットワークアーキテクチャである。
7-DoFロボットアームを用いた動的投球実験では、DMMPは計画速度、タスク成功、制約満足度において従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-16T03:29:33Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
我々はMotionGSと呼ばれる新しい変形可能な3次元ガウススプレイティングフレームワークを提案する。
MotionGSは3Dガウスの変形を導くために、前もって明示的な動きを探索する。
モノラルなダイナミックシーンの実験では、MotionGSが最先端の手法を超越していることが確認された。
論文 参考訳(メタデータ) (2024-10-10T08:19:47Z) - Shape of Motion: 4D Reconstruction from a Single Video [51.04575075620677]
本稿では,全列長3D動作を特徴とする汎用動的シーンを再構築する手法を提案する。
シーン動作をコンパクトなSE3モーションベースで表現することで,3次元動作の低次元構造を利用する。
本手法は,3D/2Dの長距離動き推定と動的シーンにおける新しいビュー合成の両面において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-07-18T17:59:08Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
動的シーン再構築のための新しい動き認識拡張フレームワークを提案する。
具体的には,まず3次元ガウス運動と画素レベルの流れの対応性を確立する。
より厳密な最適化問題を示す先行的な変形に基づくパラダイムに対して,過渡対応変形補助モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-18T03:46:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。