論文の概要: Planning with Dynamically Changing Domains
- arxiv url: http://arxiv.org/abs/2508.02697v1
- Date: Sat, 26 Jul 2025 17:34:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-10 09:30:49.316344
- Title: Planning with Dynamically Changing Domains
- Title(参考訳): 動的に変化するドメインによる計画
- Authors: Mikhail Soutchanski, Yongmei Liu,
- Abstract要約: 前もって与えられた名前のオブジェクトが有限個あると仮定され、それらは行動や流線型にのみ参加できる。
我々は一階述語論理の計画問題を定式化し、初期理論が有限一貫した流動リテラル集合であると仮定する。
本稿では,計画時に根ざした行動列の探索を整理することを提案する。
- 参考スコア(独自算出の注目度): 7.469995940050812
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In classical planning and conformant planning, it is assumed that there are finitely many named objects given in advance, and only they can participate in actions and in fluents. This is the Domain Closure Assumption (DCA). However, there are practical planning problems where the set of objects changes dynamically as actions are performed; e.g., new objects can be created, old objects can be destroyed. We formulate the planning problem in first-order logic, assume an initial theory is a finite consistent set of fluent literals, discuss when this guarantees that in every situation there are only finitely many possible actions, impose a finite integer bound on the length of the plan, and propose to organize search over sequences of actions that are grounded at planning time. We show the soundness and completeness of our approach. It can be used to solve the bounded planning problems without DCA that belong to the intersection of sequential generalized planning (without sensing actions) and conformant planning, restricted to the case without the disjunction over fluent literals. We discuss a proof-of-the-concept implementation of our planner.
- Abstract(参考訳): 古典的な計画や整合計画においては、事前に与えられた名前付きオブジェクトが有限個存在すると仮定され、それらだけが行動や流線型に参加することができる。
これはDomain Closure Assumption (DCA)である。
しかし、アクションの実行に伴ってオブジェクトの集合が動的に変化するという現実的な計画問題があり、例えば、新しいオブジェクトを作成することができ、古いオブジェクトを破棄することができる。
我々は、一階述語論理における計画問題を定式化し、初期理論が有限一貫した流動リテラルの集合であると仮定し、これが全ての状況において有限個の可能な作用しか持たないことを保証するとき、計画の長さに有限整数を課し、計画時に基礎となる行動列の探索を組織することを提案する。
アプローチの健全性と完全性を示す。
逐次一般化計画と整合計画の交点に属するDCAのない有界計画問題の解決に使用することができる。
計画立案者の概念実証について論じる。
関連論文リスト
- Planning and Acting While the Clock Ticks [15.783791140860528]
時間的プレッシャーのある問題では、最初のアクションを実行する前に、タイミングが厳しすぎて計画が完了できない。
計画終了前にアクションを発行(実行)できる並列計画と実行という,新たな問題設定を提案する。
論文 参考訳(メタデータ) (2024-03-21T19:18:47Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Skip-Plan: Procedure Planning in Instructional Videos via Condensed
Action Space Learning [85.84504287685884]
Skip-Plan(スキップ・プラン)は、訓練ビデオにおけるプロシージャ計画のための凝縮された行動空間学習法である。
アクションチェーン内の不確実なノードやエッジをスキップすることで、長いシーケンス関数と複雑なシーケンス関数を短いが信頼できるものに転送する。
我々のモデルは、凝縮された作用空間内のアクションシーケンス内で、あらゆる種類の信頼できる部分関係を探索する。
論文 参考訳(メタデータ) (2023-10-01T08:02:33Z) - Sequence-Based Plan Feasibility Prediction for Efficient Task and Motion
Planning [36.300564378022315]
本稿では,移動環境における移動操作問題を解決するための学習可能なタスク・アンド・モーション・プランニング(TAMP)アルゴリズムを提案する。
本アルゴリズムのコアは,タスク計画,目標,初期状態を考慮したトランスフォーマーに基づく新しい学習手法であるPIGINetであり,タスク計画に関連する運動軌跡の発見確率を予測する。
論文 参考訳(メタデータ) (2022-11-03T04:12:04Z) - Learning to Search in Task and Motion Planning with Streams [20.003445874753233]
ロボット工学におけるタスク計画問題と動作計画問題は、個別のタスク変数に対するシンボリック計画と、連続状態および動作変数に対する動作最適化を組み合わせたものである。
対象と事実の集合を最優先的に拡張する幾何学的情報に基づく記号プランナを提案する。
ブロックスタッキング操作タスクにおいて,このアルゴリズムを7DOFロボットアームに適用する。
論文 参考訳(メタデータ) (2021-11-25T15:58:31Z) - Planning with Learned Object Importance in Large Problem Instances using
Graph Neural Networks [28.488201307961624]
現実の計画問題は、数百から数千ものオブジェクトを巻き込むことが多い。
単一推論パスにおけるオブジェクトの重要性を予測するためのグラフニューラルネットワークアーキテクチャを提案する。
提案手法では,プランナと遷移モデルをブラックボックスとして扱い,既製のプランナで使用することができる。
論文 参考訳(メタデータ) (2020-09-11T18:55:08Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
暗黙的な逐次計画の仮定に代わるものを検討する。
本稿では,最適計画の近似を行うため,Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS)を提案する。
計画順序に対するこのアルゴリズム的柔軟性は,グリッドワールドにおけるナビゲーションタスクの改善に繋がることを示す。
論文 参考訳(メタデータ) (2020-04-23T18:08:58Z) - STRIPS Action Discovery [67.73368413278631]
近年のアプローチでは、すべての中間状態が欠如している場合でも、アクションモデルを合成する古典的な計画が成功している。
アクションシグネチャが不明な場合に,従来のプランナーを用いてSTRIPSアクションモデルを教師なしで合成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-30T17:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。