Today's Experiments Suffice to Verify the Quantum Essence of Gravity
- URL: http://arxiv.org/abs/2508.03052v1
- Date: Tue, 05 Aug 2025 03:56:01 GMT
- Title: Today's Experiments Suffice to Verify the Quantum Essence of Gravity
- Authors: Martin Plávala,
- Abstract summary: We argue that current matter-wave interferometers are sufficient to indirectly prove that gravitational interaction creates entanglement between two systems.<n>Our findings indicate that the experimental verification of the quantum essence of gravity is on the horizon.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The gravity-mediated entanglement experiments employ concepts from quantum information to argue that if gravitational interaction creates entanglement between two systems, then gravity cannot be described by a classical system. However, the proposed experiments remain beyond out current technological capability, with optimistic projections placing the experiment outside of short-term future. Here we leverage quantum information techniques to argue that current matter-wave interferometers are sufficient to indirectly prove that gravitational interaction creates entanglement between two systems. Specifically, we prove that if we experimentally verify the Schr\"{o}dinger equation for a single delocalized system interacting gravitationally with an external mass, then the time evolution of two delocalized systems will lead to gravity-mediated entanglement. Our findings indicate that the experimental verification of the quantum essence of gravity is on the horizon.
Related papers
- A One-sided Witness for the Quantumness of Gravitational Dynamics [0.0]
Many proposals rely on witnessing entanglement generation as a means to probe whether gravity is a quantum channel.<n>Here we formulate a different and conclusive indirect test of the quantum nature of the gravitational interaction.<n>Our approach enables the first one-sided verification of the quantum nature of gravity.
arXiv Detail & Related papers (2025-07-21T13:09:11Z) - Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Proposal for a Quantum Mechanical Test of Gravity at Millimeter Scale [11.799047242336727]
We propose a novel experiment that utilizes the Josephson effect to detect the different evolution of quantum phase induced from the potential difference caused by gravity.<n>We demonstrate that this experiment can test gravity quantum mechanically at the millimeter scale, and also has a potential to investigate the parity invariance of gravity at small scales.
arXiv Detail & Related papers (2024-05-25T13:27:28Z) - Entanglement Dynamics in Quantum Continuous-Variable States [2.480301925841752]
Gravitation between two quantum masses is one of the most straightforward scenarios where quantum features of gravity could be observed.
This thesis introduces general tools to tackle interaction-mediated entanglement and applies them to two particles prepared in continuous-variable states.
arXiv Detail & Related papers (2024-05-12T19:21:21Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Gravity-induced entanglement between two massive microscopic particles in curved spacetime: I.The Schwarzschild background [2.915799083273604]
The gravitational field within curved spacetime can induce observable entanglement between particle pairs in both scenarios.
This approach establishes a more pronounced and extensive manifestation of the quantum influences of gravity.
These experiments hold immense advantages and implications for the detection of quantum gravity.
arXiv Detail & Related papers (2023-08-31T08:16:43Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Perspective on Quantum Bubbles in Microgravity [40.448811194740536]
The NASA Cold Atom Laboratory (CAL) aboard the International Space Station has enabled the study of ultracold atomic bubbles.
Cal experiments have been performed on CAL with an.
rf-dressing technique; an alternate technique (dual-species interaction-driven bubbles) has also been proposed.
Both techniques can drive discovery in the next decade of fundamental physics research in microgravity.
arXiv Detail & Related papers (2022-11-09T10:55:49Z) - Gravitational decoherence by the apparatus in the quantum-gravity
induced entanglement of masses [0.0]
Recently there has been a proposal to test the quantum nature of gravity by creating quantum superpositions of two nearby neutral masses.
We will consider two light and two heavy quantum oscillators, forming pairs of probe-detector systems.
We conclude by estimating the magnitude of the decoherence in the proposed experiment for testing the quantum nature of gravity.
arXiv Detail & Related papers (2022-10-30T18:50:03Z) - Entanglement and quantum teleportation under superposed gravitational
fields [10.2542434092619]
The influence of gravitational field on entanglement of bipartite states is investigated based on the recent idea of superposition states of gravitational field.
The influence of gravitational field on the transfer of the state through quantum teleportation is also studied.
arXiv Detail & Related papers (2022-10-08T14:16:04Z) - Inference of gravitational field superposition from quantum measurements [1.7246954941200043]
In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state.
We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states.
Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.
arXiv Detail & Related papers (2022-09-06T04:37:07Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Atom-interferometric test of the universality of gravitational redshift
and free fall [48.82541018696971]
Light-pulse atom interferometers constitute powerful quantum sensors for inertial forces.
We present a specific geometry which together with state transitions leads to a scheme that is sensitive to both violations of the universality of free fall and gravitational redshift.
arXiv Detail & Related papers (2020-01-27T13:35:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.