論文の概要: Toward a Trustworthy Optimization Modeling Agent via Verifiable Synthetic Data Generation
- arxiv url: http://arxiv.org/abs/2508.03117v1
- Date: Tue, 05 Aug 2025 05:54:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.806488
- Title: Toward a Trustworthy Optimization Modeling Agent via Verifiable Synthetic Data Generation
- Title(参考訳): 検証可能な合成データ生成による信頼できる最適化モデリングエージェントの実現に向けて
- Authors: Vinicius Lima, Dzung T. Phan, Jayant Kalagnanam, Dhaval Patel, Nianjun Zhou,
- Abstract要約: 本稿では,信頼性の高い大規模言語モデル(LLM)エージェントを合成データ生成パイプラインを介して訓練するためのフレームワークを提案する。
OptiTrustは、自然言語からソルバ対応コードへの多言語翻訳を行うモジュール型LLMエージェントである。
我々のエージェントは、標準ベンチマークで最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 11.988926173584154
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a framework for training trustworthy large language model (LLM) agents for optimization modeling via a verifiable synthetic data generation pipeline. Focusing on linear and mixed-integer linear programming, our approach begins with structured symbolic representations and systematically produces natural language descriptions, mathematical formulations, and solver-executable code. By programmatically constructing each instance with known optimal solutions, the pipeline ensures full verifiability and enables automatic filtering of low-quality demonstrations generated by teacher models. Each dataset instance includes a structured representation of the optimization problem, a corresponding natural language description, the verified optimal solution, and step-by-step demonstrations - generated by a teacher model - that show how to model and solve the problem across multiple optimization modeling languages. This enables supervised fine-tuning of open-source LLMs specifically tailored to optimization tasks. To operationalize this pipeline, we introduce OptiTrust, a modular LLM agent that performs multi-stage translation from natural language to solver-ready code, leveraging stepwise demonstrations, multi-language inference, and majority-vote cross-validation. Our agent achieves state-of-the-art performance on standard benchmarks. Out of 7 datasets, it achieves the highest accuracy on six and outperforms the next-best algorithm by at least 8 percentage on three of them. Our approach provides a scalable, verifiable, and principled path toward building reliable LLM agents for real-world optimization applications.
- Abstract(参考訳): 本稿では,信頼性の高い大規模言語モデル (LLM) エージェントを,検証可能な合成データ生成パイプラインを用いて最適化するフレームワークを提案する。
線形および混合整数線形プログラミングに焦点をあて、構造化された記号表現から始まり、自然言語記述、数学的定式化、解法実行可能コードなどを体系的に生成する。
各インスタンスを既知の最適解でプログラム的に構築することにより、パイプラインは完全な検証可能性を確保し、教師モデルによって生成された低品質な実演の自動フィルタリングを可能にする。
各データセットインスタンスには、最適化問題の構造化された表現、対応する自然言語記述、検証された最適ソリューション、教師モデルによって生成されたステップバイステップのデモが含まれており、複数の最適化モデリング言語をまたいだ問題のモデル化と解決方法を示している。
これにより、最適化タスクに適したオープンソースのLLMの教師付き微調整が可能になる。
このパイプラインを運用するために,モジュール型LLMエージェントであるOptiTrustを導入する。
我々のエージェントは、標準ベンチマークで最先端のパフォーマンスを達成する。
7つのデータセットのうち、6つのデータセットで最高精度を達成し、3つのうち少なくとも8パーセントは次のベストアルゴリズムを上回っている。
我々のアプローチは、現実の最適化アプリケーションのための信頼性の高いLCMエージェントを構築するための、スケーラブルで検証可能な、原則化されたパスを提供する。
関連論文リスト
- Large Language Models are Demonstration Pre-Selectors for Themselves [57.101804269100185]
大規模言語モデル(LLM)を備えたインコンテキスト学習(ICL)は、トレーニングデータ全体から数ショットのデモを選択することで、強力な数ショットのパフォーマンスを提供する。
FEw yet Essential Demonstration prE-selectoRは、デモの代表的なサブセットを特定する新しい事前選択フレームワークである。
FEwでもEssential Demonstration prE-selectoRは、パフォーマンスを維持しながら、トレーニングデータのサイズを20%以上削減できる。
論文 参考訳(メタデータ) (2025-06-06T12:29:03Z) - Solver-Informed RL: Grounding Large Language Models for Authentic Optimization Modeling [3.253908111652627]
大型言語モデル(LLM)は、しばしば幻覚に対する形式的正当で使用可能なモデルを生成するのに苦労する。
本稿では,検証リワードを用いた強化学習を用いた最適化モデルのためのLLMの信頼性を向上する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-17T02:32:03Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
我々は、MLLMのマルチモーダル推論能力を高めるために、選好最適化(PO)プロセスを導入する。
具体的には、自動選好データ構築パイプラインを設計し、高品質で大規模なマルチモーダル推論選好データセットであるMMPRを作成する。
マルチモーダルCoT性能を向上するMPO(Mixed Preference Optimization)と呼ばれるシンプルな手法を開発した。
論文 参考訳(メタデータ) (2024-11-15T18:59:27Z) - Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
本稿では,自然言語問題記述から解法対応最適化モデルを自動生成する,$textitautoformulation$の問題にアプローチする。
オートフォーミュレーションの3つの主要な課題を識別する: $textit(1)$ 巨大で問題に依存した仮説空間、および$textit(2)$ 不確実性の下でこの空間を効率的かつ多様に探索する。
我々は,$textitLarge Language Models$と$textitMonte-Carlo Tree Search$を併用した新しい手法を提案する。
論文 参考訳(メタデータ) (2024-11-03T20:41:38Z) - LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch [16.174567164068037]
最適化の一般化を促進するため,LLMOPTと呼ばれる統合学習ベースのフレームワークを提案する。
LLMOPTは、様々な最適化問題タイプを定義するための普遍モデルとして導入された5要素の定式化を構築している。
LLMOPTは線形/非線形プログラミングや混合整数プログラミングといった様々な最適化問題をモデル化することができる。
論文 参考訳(メタデータ) (2024-10-17T04:37:37Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
大規模言語モデル(LLM)は様々なタスクで大きな成功を収めており、生成品質をさらに向上させるためには微調整が必要である場合もある。
これらの課題に対処する直接的な解決策は、教師なしの下流タスクから高信頼のデータを生成することである。
本稿では,プロンプトと全体的な擬似スーパービジョンを両立させる新しい手法,擬似教師付きデモアライメント・アライメント・アライメント・プロンプト・最適化(PAPO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling [62.19438812624467]
大規模言語モデル (LLM) は数学的推論における問題解決能力を示した。
本稿では,人間可読入力と出力を用いたエンドツーエンド最適化問題のベンチマークであるOptiBenchを提案する。
論文 参考訳(メタデータ) (2024-07-13T13:27:57Z) - Solving General Natural-Language-Description Optimization Problems with Large Language Models [34.50671063271608]
外部ソルバでLLMを増強するOPtLLMという新しいフレームワークを提案する。
OptLLMは自然言語でユーザクエリを受け付け、それらを数学的定式化やプログラミングコードに変換し、解決者を呼び出して結果を計算する。
OptLLMフレームワークのいくつかの機能は、2023年6月から試用されている。
論文 参考訳(メタデータ) (2024-07-09T07:11:10Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.67321902882617]
本稿では,オープンソースのLLMをトレーニングし,モデリングやソルバコードの開発を最適化する実行可能なパスを提案する。
この研究は、実用的なOR問題の解決においてLLMを評価するための最初の産業ベンチマークであるIndustrialORも導入した。
論文 参考訳(メタデータ) (2024-05-28T01:55:35Z) - FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema [36.65009632307124]
大規模言語モデル(LLM)のタスク性能向上のためのFIPO(Free-from Instruction-oriented Prompt Optimization)を提案する。
FIPOはモジュール型のAPOテンプレートを使用して、単純で最適化されたプロンプトを生成するために、ナイーブなタスク命令、オプションの命令応答、オプションの接地真理を動的に統合する。
5つの公開ベンチマークと6つのテストモデルでFIPOフレームワークを検証する。
論文 参考訳(メタデータ) (2024-02-19T03:56:44Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。