Cross-patient Seizure Onset Zone Classification by Patient-Dependent Weight
- URL: http://arxiv.org/abs/2508.03635v1
- Date: Tue, 05 Aug 2025 16:50:50 GMT
- Title: Cross-patient Seizure Onset Zone Classification by Patient-Dependent Weight
- Authors: Xuyang Zhao, Hidenori Sugano, Toshihisa Tanaka,
- Abstract summary: We propose a method to fine-tune a pretrained model using patient-specific weights for every new test patient to improve diagnostic performance.<n>Results show improved classification accuracy for every test patient, with an average improvement of more than 10%.
- Score: 7.773508953474537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying the seizure onset zone (SOZ) in patients with focal epilepsy is essential for surgical treatment and remains challenging due to its dependence on visual judgment by clinical experts. The development of machine learning can assist in diagnosis and has made promising progress. However, unlike data in other fields, medical data is usually collected from individual patients, and each patient has different illnesses, physical conditions, and medical histories, which leads to differences in the distribution of each patient's data. This makes it difficult for a machine learning model to achieve consistently reliable performance in every new patient dataset, which we refer to as the "cross-patient problem." In this paper, we propose a method to fine-tune a pretrained model using patient-specific weights for every new test patient to improve diagnostic performance. First, the supervised learning method is used to train a machine learning model. Next, using the intermediate features of the trained model obtained through the test patient data, the similarity between the test patient data and each training patient's data is defined to determine the weight of each training patient to be used in the following fine-tuning. Finally, we fine-tune all parameters in the pretrained model with training data and patient weights. In the experiment, the leave-one-patient-out method is used to evaluate the proposed method, and the results show improved classification accuracy for every test patient, with an average improvement of more than 10%.
Related papers
- Pre-Ictal Seizure Prediction Using Personalized Deep Learning [0.0]
Approximately 23 million or 30% of epilepsy patients worldwide suffer from drug-resistant epilepsy (DRE)
The unpredictability of seizure occurrences, which causes safety issues as well as social concerns, restrict the lifestyles of DRE patients.
The goal of this research was to employ improved technologies and methods to predict seizures up to two hours before onset.
arXiv Detail & Related papers (2024-10-07T21:04:41Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - Towards Trustworthy Cross-patient Model Development [3.109478324371548]
We study differences in model performance and explainability when trained for all patients and one patient at a time.
The results show that patients' demographics has a large impact on the performance and explainability and thus trustworthiness.
arXiv Detail & Related papers (2021-12-20T10:51:04Z) - Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning [1.0323063834827415]
This paper provides the development processes of the severity assessment model using machine learning techniques.
Model only requires basic patients' basic personal data, allowing for them to judge their own severity.
We aim to establish a medical system that allows patients to check their own severity and informs them to visit the appropriate clinic center based on the past treatment details of other patients with similar severity.
arXiv Detail & Related papers (2021-09-18T19:56:27Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
This work addresses the task of optimally extracting information from longitudinal patient data in the real-world setting.
We show that with machine learning methods suited for patient trajectories modeling, we can predict disability progression of patients in a two-year horizon.
Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction.
arXiv Detail & Related papers (2020-11-09T20:48:00Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.