Probing and Enhancing the Robustness of GNN-based QEC Decoders with Reinforcement Learning
- URL: http://arxiv.org/abs/2508.03783v2
- Date: Thu, 07 Aug 2025 02:27:20 GMT
- Title: Probing and Enhancing the Robustness of GNN-based QEC Decoders with Reinforcement Learning
- Authors: Ryota Ikeda,
- Abstract summary: Graph Neural Networks (GNNs) have emerged as a powerful, data-driven approach for Quantum Error Correction (QEC) decoding.<n>This work introduces a novel framework to systematically probe the vulnerabilities of a GNN decoder using a reinforcement learning (RL) agent.<n>We apply this framework to a Graph Attention Network (GAT) decoder trained on experimental surface code data from Google Quantum AI.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have emerged as a powerful, data-driven approach for Quantum Error Correction (QEC) decoding, capable of learning complex noise characteristics directly from syndrome data. However, the robustness of these decoders against subtle, adversarial perturbations remains a critical open question. This work introduces a novel framework to systematically probe the vulnerabilities of a GNN decoder using a reinforcement learning (RL) agent. The RL agent is trained as an adversary with the goal of finding minimal syndrome modifications that cause the decoder to misclassify. We apply this framework to a Graph Attention Network (GAT) decoder trained on experimental surface code data from Google Quantum AI. Our results show that the RL agent can successfully identify specific, critical vulnerabilities, achieving a high attack success rate with a minimal number of bit flips. Furthermore, we demonstrate that the decoder's robustness can be significantly enhanced through adversarial training, where the model is retrained on the adversarial examples generated by the RL agent. This iterative process of automated vulnerability discovery and targeted retraining presents a promising methodology for developing more reliable and robust neural network decoders for fault-tolerant quantum computing.
Related papers
- Fooling the Decoder: An Adversarial Attack on Quantum Error Correction [49.48516314472825]
In this work, we target a basic RL surface code decoder (DeepQ) to create the first adversarial attack on quantum error correction.<n>We demonstrate an attack that reduces the logical qubit lifetime in memory experiments by up to five orders of magnitude.<n>This attack highlights the susceptibility of machine learning-based QEC and underscores the importance of further research into robust QEC methods.
arXiv Detail & Related papers (2025-04-28T10:10:05Z) - Evaluating Single Event Upsets in Deep Neural Networks for Semantic Segmentation: an embedded system perspective [1.474723404975345]
This paper delves into the robustness assessment in embedded Deep Neural Networks (DNNs)<n>By scrutinizing the layer-by-layer and bit-by-bit sensitivity of various encoder-decoder models to soft errors, this study thoroughly investigates the vulnerability of segmentation DNNs to SEUs.<n>We propose a set of practical lightweight error mitigation techniques with no memory or computational cost suitable for resource-constrained deployments.
arXiv Detail & Related papers (2024-12-04T18:28:38Z) - Advanced Financial Fraud Detection Using GNN-CL Model [13.5240775562349]
The innovative GNN-CL model proposed in this paper marks a breakthrough in the field of financial fraud detection.
It combines the advantages of graph neural networks (gnn), convolutional neural networks (cnn) and long short-term memory (LSTM) networks.
A key novelty of this paper is the use of multilayer perceptrons (MLPS) to estimate node similarity.
arXiv Detail & Related papers (2024-07-09T03:59:06Z) - Quantum-enhanced learning with a controllable bosonic variational sensor network [0.40964539027092906]
Supervised learning assisted by an entangled sensor network (SLAEN)
We propose a SLAEN capable of handling nonlinear data classification tasks.
We uncover a threshold phenomenon in classification error -- when the energy of probes exceeds a certain threshold, the error drastically to zero.
arXiv Detail & Related papers (2024-04-28T19:41:40Z) - Simultaneous Discovery of Quantum Error Correction Codes and Encoders with a Noise-Aware Reinforcement Learning Agent [0.0]
In this work, we significantly expand the power ofReinforcement learning approaches to QEC code discovery.
Explicitly, we train an RL agent that automatically discovers both QEC codes and their encoding circuits for a given gate set.
We introduce the concept of a noise-aware meta-agent, which learns to produce encoding strategies simultaneously for a range of noise models.
arXiv Detail & Related papers (2023-11-08T15:19:16Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.