論文の概要: Data and AI governance: Promoting equity, ethics, and fairness in large language models
- arxiv url: http://arxiv.org/abs/2508.03970v1
- Date: Tue, 05 Aug 2025 23:15:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.474621
- Title: Data and AI governance: Promoting equity, ethics, and fairness in large language models
- Title(参考訳): データとAIガバナンス:大規模言語モデルにおける公平性、倫理、公正性の促進
- Authors: Alok Abhishek, Lisa Erickson, Tushar Bandopadhyay,
- Abstract要約: 機械学習モデルのライフサイクル全体にわたってバイアスを管理し、評価し、定量化するためのアプローチをカバーします。
データとAIのガバナンスアプローチは、実践的で現実的なアプリケーションに適している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we cover approaches to systematically govern, assess and quantify bias across the complete life cycle of machine learning models, from initial development and validation to ongoing production monitoring and guardrail implementation. Building upon our foundational work on the Bias Evaluation and Assessment Test Suite (BEATS) for Large Language Models, the authors share prevalent bias and fairness related gaps in Large Language Models (LLMs) and discuss data and AI governance framework to address Bias, Ethics, Fairness, and Factuality within LLMs. The data and AI governance approach discussed in this paper is suitable for practical, real-world applications, enabling rigorous benchmarking of LLMs prior to production deployment, facilitating continuous real-time evaluation, and proactively governing LLM generated responses. By implementing the data and AI governance across the life cycle of AI development, organizations can significantly enhance the safety and responsibility of their GenAI systems, effectively mitigating risks of discrimination and protecting against potential reputational or brand-related harm. Ultimately, through this article, we aim to contribute to advancement of the creation and deployment of socially responsible and ethically aligned generative artificial intelligence powered applications.
- Abstract(参考訳): 本稿では,初期開発から検証,生産監視,ガードレール実装に至るまで,機械学習モデルのライフサイクル全体にわたって,バイアスを体系的に管理し,評価し,定量化するアプローチについて述べる。
著者らは、大規模言語モデルのためのバイアス評価評価テストスイート(BEATS)の基礎研究に基づいて、LLM(Large Language Models)における偏見と公平性に関連するギャップを共有し、LLM内のバイアス、倫理、公正性、ファクチュアリティに対処するためのデータとAIガバナンスフレームワークについて議論する。
本稿では,本論文で論じるデータとAIのガバナンスアプローチを実世界のアプリケーションに適用し,実運用に先立ってLLMの厳密なベンチマークを可能にするとともに,連続的なリアルタイム評価を容易にし,LLM生成した応答を積極的に管理する。
AI開発のライフサイクルを通じてデータとAIガバナンスを実装することで、組織はGenAIシステムの安全性と責任を大幅に強化し、差別のリスクを効果的に軽減し、潜在的な評判やブランド関連の害から保護することができる。
最終的に、本稿は、社会的責任と倫理的に整合した生成人工知能駆動アプリケーションの作成と展開の進展に貢献することを目的としている。
関連論文リスト
- Addressing Bias in LLMs: Strategies and Application to Fair AI-based Recruitment [49.81946749379338]
この研究は、トランスフォーマーベースのシステムの能力を分析して、データに存在する人口統計バイアスを学習する。
最終ツールにおける偏りを緩和する手段として,学習パイプラインからの性別情報を削減するためのプライバシー向上フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-13T15:29:43Z) - The AI Imperative: Scaling High-Quality Peer Review in Machine Learning [49.87236114682497]
AIによるピアレビューは、緊急の研究とインフラの優先事項になるべきだ、と私たちは主張する。
我々は、事実検証の強化、レビュアーのパフォーマンスの指導、品質改善における著者の支援、意思決定におけるAC支援におけるAIの具体的な役割を提案する。
論文 参考訳(メタデータ) (2025-06-09T18:37:14Z) - LLM Ethics Benchmark: A Three-Dimensional Assessment System for Evaluating Moral Reasoning in Large Language Models [8.018569128518187]
本研究では,大規模言語モデル(LLM)の道徳的推論能力を体系的に評価するための新しい枠組みを確立する。
我々の枠組みは、3次元を通して人間の倫理基準との整合性を定量化することでこの問題に対処する。
このアプローチは、LLMの倫理的強みと弱みを正確に識別し、目標とする改善と社会的価値との整合性を高める。
論文 参考訳(メタデータ) (2025-05-01T20:36:19Z) - BEATS: Bias Evaluation and Assessment Test Suite for Large Language Models [0.0]
我々は、大規模言語モデル(LLM)におけるバイアス、倫理、公平性、現実性を評価するための新しいフレームワークBEATSを紹介する。
LLMのバイアスベンチマークを行い、29の異なるメトリクスのパフォーマンスを計測する。
これらの指標は、人口統計学、認知学、社会的偏見、倫理的推論、グループフェアネス、事実に関する誤情報リスクなど、幅広い特徴に及びます。
論文 参考訳(メタデータ) (2025-03-31T16:56:52Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
大規模言語モデル(LLM)は人工知能(AI)の変換ツールとして登場した。
本稿では, 統計学者がLLMの開発に重要な貢献できる可能性について考察する。
我々は不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-25T03:40:36Z) - Powering LLM Regulation through Data: Bridging the Gap from Compute Thresholds to Customer Experiences [0.0]
本稿では,計算レベルのしきい値と一般化モデル評価に着目した現在の規制手法は,特定のLCMベースのユーザエクスペリエンスの安全性と有効性を保証するには不十分である,と論じる。
本稿では,ユーザによる実際の体験と評価のための高品質データセットのキュレーションを中心とした認定プロセスへの移行を提案する。
論文 参考訳(メタデータ) (2025-01-12T16:20:40Z) - The Synergy of LLMs & RL Unlocks Offline Learning of Generalizable Language-Conditioned Policies with Low-fidelity Data [50.544186914115045]
TEDUOは、シンボリック環境におけるオフライン言語条件のポリシー学習のための、新しいトレーニングパイプラインである。
まず、オフラインデータセットをよりリッチなアノテーションで拡張する自動化ツールとして、次に、一般化可能な命令フォローエージェントとして使用します。
論文 参考訳(メタデータ) (2024-12-09T18:43:56Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - The Impossibility of Fair LLMs [17.812295963158714]
さまざまな技術的公正フレームワークを分析し、公正な言語モデルの開発を難易度の高いものにするために、それぞれに固有の課題を見つけます。
それぞれのフレームワークが汎用的なAIコンテキストに拡張されないか、実際には実現不可能であることを示す。
これらの固有の課題は、LLMを含む汎用AIにおいて、限られた参加入力や限られた測定方法といった経験的な課題が克服されたとしても、持続する。
論文 参考訳(メタデータ) (2024-05-28T04:36:15Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
我々は、23の最先端のLarge Language Models (LLMs)ベンチマークを批判的に評価する。
私たちの研究は、バイアス、真の推論、適応性、実装の不整合、エンジニアリングの複雑さ、多様性、文化的およびイデオロギー規範の見落としなど、重大な制限を明らかにしました。
論文 参考訳(メタデータ) (2024-02-15T11:08:10Z) - FAIR Enough: How Can We Develop and Assess a FAIR-Compliant Dataset for Large Language Models' Training? [3.0406004578714008]
大規模言語モデルの急速な進化は、AI開発における倫理的考慮とデータの整合性の必要性を強調している。
FAIRの原則は倫理データのスチュワードシップに不可欠であるが、LLMトレーニングデータの文脈におけるそれらの特定の応用は未調査領域のままである。
本稿では,FAIR の原則を LLM 開発ライフサイクルに統合する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-19T21:21:02Z) - Towards a Responsible AI Metrics Catalogue: A Collection of Metrics for
AI Accountability [28.67753149592534]
本研究は,包括的メトリクスカタログへの取り組みを導入することで,説明責任のギャップを埋めるものである。
我々のカタログは、手続き的整合性を支えるプロセスメトリクス、必要なツールやフレームワークを提供するリソースメトリクス、AIシステムのアウトプットを反映する製品メトリクスを記述しています。
論文 参考訳(メタデータ) (2023-11-22T04:43:16Z) - Ethical Considerations and Policy Implications for Large Language
Models: Guiding Responsible Development and Deployment [48.72819550642584]
本稿では,コンテンツ生成における大規模言語モデル(LLM)の倫理的考察と意義について考察する。
生成AIプログラムの肯定的および否定的な使用の可能性を強調し、アウトプットに責任を割り当てる際の課題を探求する。
論文 参考訳(メタデータ) (2023-08-01T07:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。