論文の概要: Transmon qubit using Sn as a junction superconductor
- arxiv url: http://arxiv.org/abs/2508.04007v1
- Date: Wed, 06 Aug 2025 01:45:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.497627
- Title: Transmon qubit using Sn as a junction superconductor
- Title(参考訳): 接合超伝導体としてのSnを用いたトランスモン量子ビット
- Authors: Amrita Purkayastha, Amritesh Sharma, Param J. Patel, An-Hsi Chen, Connor P. Dempsey, Shreyas Asodekar, Subhayan Sinha, Maxime Tomasian, Mihir Pendharkar, Christopher J. Palmstrøm, Moïra Hocevar, Kun Zuo, Michael Hatridge, Sergey M. Frolov,
- Abstract要約: 超伝導量子ビットは通常、アルミニウム-アルミニウム酸化物トンネル接合を用いて非線形インダクタンスを提供する。
半導体バリアとの接合により、超伝導材料を変化させ、アルミニウムを超えて探索することが可能となる。
InAs半導体ナノワイヤをβ-Snの薄い超伝導シェルでコーティングし,トランスモン量子ビットを実現する。
- 参考スコア(独自算出の注目度): 0.20288584947488564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconductor qubits typically use aluminum-aluminum oxide tunnel junctions to provide the non-linear inductance. Junctions with semiconductor barriers make it possible to vary the superconductor material and explore beyond aluminum. We use InAs semiconductor nanowires coated with thin superconducting shells of beta-Sn to realize transmon qubits. By tuning the Josephson energy with a gate voltage, we adjust the qubit frequency over a range of 3 GHz. The longest energy relaxation time, T1 = 27 microseconds, is obtained at the lowest qubit frequencies, while the longest echo dephasing time, T2 = 1.8 microseconds, is achieved at higher frequencies. We assess the possible factors limiting coherence times in these devices and discuss steps to enhance performance through improvements in materials fabrication and circuit design.
- Abstract(参考訳): 超伝導量子ビットは通常、アルミニウム-アルミニウム酸化物トンネル接合を用いて非線形インダクタンスを提供する。
半導体バリアとの接合により、超伝導材料を変化させ、アルミニウムを超えて探索することが可能となる。
InAs半導体ナノワイヤをβ-Snの薄い超伝導シェルでコーティングし,トランスモン量子ビットを実現する。
ゲート電圧でジョセフソンエネルギーを調整することにより、3GHzの範囲でキュービット周波数を調整する。
最も長いエネルギー緩和時間であるT1 = 27マイクロ秒は最低キュービット周波数で得られ、最も長いエコー減圧時間であるT2 = 1.8マイクロ秒は高い周波数で達成される。
これらのデバイスにおけるコヒーレンス時間を制限する要因について検討し、材料製造や回路設計の改善による性能向上について考察する。
関連論文リスト
- Operation of a high-frequency, phase-slip qubit [0.0]
窒化チタンを用いた相すべり接合に基づく超伝導量子ビットの動作を実証した。
我々は超伝導量子ビットの読み出しとコヒーレント制御を行い、量子ビット寿命を測定する。
その結果, 量子情報処理の超伝導ツールとして位相スリップ接合が加えられた。
論文 参考訳(メタデータ) (2025-02-10T21:22:24Z) - Two-tone spectroscopy for the detection of two-level systems in superconducting qubits [108.40985826142428]
物理的起源が不明な2レベル系(TLS)は超伝導量子ビットにおけるデコヒーレンスの主要な要因である。
本稿では,マイクロ波駆動と分散読み出しのみを必要とする新しい手法を提案し,固定周波数キュービットも動作させる。
論文 参考訳(メタデータ) (2024-04-22T09:53:00Z) - A gate tunable transmon qubit in planar Ge [30.432877421232842]
半導体ジョセフソン接合を用いたゲート可変トランスモン(ゲートモン)は、ハイブリッド量子回路のビルディングブロックとして出現している。
我々は平面ゲルマニウムで作られた門門を提示する。
共振器と2トーン分光器を併用した広周波数帯における量子ビット可変性を示す。
論文 参考訳(メタデータ) (2024-03-25T13:52:05Z) - Characterizing losses in InAs two-dimensional electron gas-based gatemon
qubits [4.597795956436758]
InAs2次元電子ガスを用いたゲートモン量子ビットとコプラナー導波路共振器の連続波・時間領域特性について述べる。
クビットは読み出し空洞と真空ラビ分裂し、クビット基底と第1励起状態の間のコヒーレントラビ振動を駆動することを示す。
本稿では,コプラナー導波路共振器の品質要因の系統的研究を通じて,これらの材料に存在する損失機構について詳述する。
論文 参考訳(メタデータ) (2023-09-29T14:23:28Z) - Silicide-based Josephson field effect transistors for superconducting
qubits [0.0]
代替の「ゲートモン」量子ビットが最近登場し、これはハイブリッド超伝導/半導体(S/Sm)デバイスをゲート調整されたジョセフソン接合として使用している。
拡張性のあるゲートモン設計はCMOS Josephson Field-Effect Transistors を調整可能な弱いリンクとして作成することができる。
シリコンベースのトランジスタにおけるアンドリーフ電流のゲート変調は、完全にCMOS化された超伝導量子コンピュータへのステップを表している。
論文 参考訳(メタデータ) (2022-09-06T18:00:03Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
印加された直流電界を用いて、クォービット共鳴から外れた欠陥を調整することにより、クビットコヒーレンスを向上させることができることを示す。
また、超伝導量子プロセッサにおいて局所ゲート電極をどのように実装し、個々の量子ビットの同時コヒーレンス最適化を実現するかについても論じる。
論文 参考訳(メタデータ) (2022-08-02T16:18:30Z) - Microwave-activated gates between a fluxonium and a transmon qubit [59.95978973946985]
本研究では,フラキソニウムとトランスモン量子ビットの2種類のマイクロ波活性化ゲートを提案し,解析する。
中周波数のフラキソニウム量子ビットでは、トランスモン-フルキソニウム系はフラキソニウムのより高いレベルによって媒介される相互共鳴効果を許容する。
高速マイクロ波CPHASEゲートはフラクソニウムの高レベルを用いて実装することができる。
論文 参考訳(メタデータ) (2022-06-13T14:34:11Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
マイクロ波領域の超伝導回路は 未だにそのような装置を欠いている
共振導波路に結合した8量子ビットからなる超伝導メタマテリアルにおいて、電磁波の減速を実証した。
本研究は, 超伝導回路の高柔軟性を実証し, カスタムバンド構造を実現することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T20:55:10Z) - Initial Design of a W-band Superconducting Kinetic Inductance Qubit
(Kineticon) [0.0]
非線形ナノワイヤ部を有するWバンド周波数で動作するインダクタンス量子ビットについて述べる。
クビットを高い周波数で操作すれば 希釈冷凍機温度の要求を緩和できる
論文 参考訳(メタデータ) (2020-12-15T22:40:32Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
ジョセフソントンネル接合は、量子ビットを含むほとんどの超伝導電子回路の中心である。
近年、サブミクロンスケールの重なり合う接合が注目されている。
この研究は、高度な材料と成長プロセスによるより標準化されたプロセスフローへの道を開き、超伝導量子回路の大規模製造において重要なステップとなる。
論文 参考訳(メタデータ) (2020-06-30T14:52:14Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
局所周波数制御による8つの超伝導トランスモン量子ビットからなるメタマテリアルを実験的に検討した。
極性バンドギャップの出現とともに,超・亜ラジカル状態の形成を観察する。
この研究の回路は、1ビットと2ビットの実験を、完全な量子メタマテリアルへと拡張する。
論文 参考訳(メタデータ) (2020-06-05T09:27:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。