Unmasking Interstitial Lung Diseases: Leveraging Masked Autoencoders for Diagnosis
- URL: http://arxiv.org/abs/2508.04429v1
- Date: Wed, 06 Aug 2025 13:16:34 GMT
- Title: Unmasking Interstitial Lung Diseases: Leveraging Masked Autoencoders for Diagnosis
- Authors: Ethan Dack, Lorenzo Brigato, Vasilis Dedousis, Janine Gote-Schniering, Cheryl, Hanno Hoppe, Aristomenis Exadaktylos, Manuela Funke-Chambour, Thomas Geiser, Andreas Christe, Lukas Ebner, Stavroula Mougiakakou,
- Abstract summary: Masked autoencoders (MAEs) have emerged as a powerful approach for pre-training on unlabelled data.<n>We train an MAE on a curated collection of over 5,000 chest computed tomography (CT) scans.<n>The pretrained MAE is then fine-tuned on a downstream classification task for diffused lung disease diagnosis.
- Score: 0.3187482513047917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Masked autoencoders (MAEs) have emerged as a powerful approach for pre-training on unlabelled data, capable of learning robust and informative feature representations. This is particularly advantageous in diffused lung disease research, where annotated imaging datasets are scarce. To leverage this, we train an MAE on a curated collection of over 5,000 chest computed tomography (CT) scans, combining in-house data with publicly available scans from related conditions that exhibit similar radiological patterns, such as COVID-19 and bacterial pneumonia. The pretrained MAE is then fine-tuned on a downstream classification task for diffused lung disease diagnosis. Our findings demonstrate that MAEs can effectively extract clinically meaningful features and improve diagnostic performance, even in the absence of large-scale labelled datasets. The code and the models are available here: https://github.com/eedack01/lung_masked_autoencoder.
Related papers
- Lung Nodule-SSM: Self-Supervised Lung Nodule Detection and Classification in Thoracic CT Images [0.36832029288386137]
Lung cancer remains among the deadliest types of cancer in recent decades.<n>limited availability of annotated medical imaging data remains a bottleneck in developing accurate computer-aided diagnosis (CAD) systems.<n>We propose a novel "LungNodule-SSM" method, which utilizes selfsupervised learning with DINOv2 as a backbone.
arXiv Detail & Related papers (2025-05-21T05:13:11Z) - MRGen: Segmentation Data Engine for Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically important imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize data, for training segmentation models for underrepresented modalities.<n>We present MRGen, a data engine for controllable medical image synthesis conditioned on text prompts and segmentation masks.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
We present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers.
Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application.
arXiv Detail & Related papers (2023-10-05T07:48:55Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
Lung cancer has been one of the leading causes of cancer-related deaths worldwide for years.
Deep learning, computer-assisted diagnosis (CAD) models based on learning algorithms can accelerate the screening process.
However, developing robust and accurate models often requires large-scale and diverse medical datasets with high-quality annotations.
arXiv Detail & Related papers (2023-05-02T01:04:22Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Classification and Segmentation of Pulmonary Lesions in CT images using
a combined VGG-XGBoost method, and an integrated Fuzzy Clustering-Level Set
technique [0.0]
Current pulmonary disease diagnosis is made by human resources, which is time-consuming and requires a specialist in this field.
Our goal is to develop a system that can detect and classify lung lesions with high accuracy and segment them in CT-scan images.
arXiv Detail & Related papers (2021-01-04T13:25:13Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.